File size: 12,759 Bytes
21dd449
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
/* sha256.c - an implementation of SHA-256/224 hash functions
 * based on FIPS 180-3 (Federal Information Processing Standart).
 *
 * Copyright (c) 2010, Aleksey Kravchenko <rhash.admin@gmail.com>
 *
 * Permission to use, copy, modify, and/or distribute this software for any
 * purpose with or without fee is hereby granted.
 *
 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH
 * REGARD TO THIS SOFTWARE  INCLUDING ALL IMPLIED WARRANTIES OF  MERCHANTABILITY
 * AND FITNESS.  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT,
 * INDIRECT,  OR CONSEQUENTIAL DAMAGES  OR ANY DAMAGES WHATSOEVER RESULTING FROM
 * LOSS OF USE,  DATA OR PROFITS,  WHETHER IN AN ACTION OF CONTRACT,  NEGLIGENCE
 * OR OTHER TORTIOUS ACTION,  ARISING OUT OF  OR IN CONNECTION  WITH THE USE  OR
 * PERFORMANCE OF THIS SOFTWARE.

 * Modified for hash-wasm by Dani Biró
 */

#define WITH_BUFFER


//////////////////////////////////////////////////////////////////////////

#include <stdint.h>
#include <stdalign.h>

#ifndef NULL
#define NULL 0
#endif

#ifdef _MSC_VER
#define WASM_EXPORT
#define __inline__
#else
#define WASM_EXPORT __attribute__((visibility("default")))
#endif

#ifdef WITH_BUFFER

#define MAIN_BUFFER_SIZE 8 * 1024 * 1024
alignas(128) uint8_t main_buffer[MAIN_BUFFER_SIZE];

WASM_EXPORT
uint8_t *Hash_GetBuffer() {
  return main_buffer;
}

#endif

// Sometimes LLVM emits these functions during the optimization step
// even with -nostdlib -fno-builtin flags
static __inline__ void* memcpy(void* dst, const void* src, uint32_t cnt) {
  uint8_t *destination = dst;
  const uint8_t *source = src;
  while (cnt) {
    *(destination++)= *(source++);
    --cnt;
  }
  return dst;
}

static __inline__ void* memset(void* dst, const uint8_t value, uint32_t cnt) {
  uint8_t *p = dst;
  while (cnt--) {
    *p++ = value;
  }
  return dst;
}

static __inline__ void* memcpy2(void* dst, const void* src, uint32_t cnt) {
  uint64_t *destination64 = dst;
  const uint64_t *source64 = src;
  while (cnt >= 8) {
    *(destination64++)= *(source64++);
    cnt -= 8;
  }

  uint8_t *destination = (uint8_t*)destination64;
  const uint8_t *source = (uint8_t*)source64;
  while (cnt) {
    *(destination++)= *(source++);
    --cnt;
  }
  return dst;
}

static __inline__ void memcpy16(void* dst, const void* src) {
  uint64_t* dst64 = (uint64_t*)dst;
  uint64_t* src64 = (uint64_t*)src;

  dst64[0] = src64[0];
  dst64[1] = src64[1];
}

static __inline__ void memcpy32(void* dst, const void* src) {
  uint64_t* dst64 = (uint64_t*)dst;
  uint64_t* src64 = (uint64_t*)src;

  #pragma clang loop unroll(full)
  for (int i = 0; i < 4; i++) {
    dst64[i] = src64[i];
  }
}

static __inline__ void memcpy64(void* dst, const void* src) {
  uint64_t* dst64 = (uint64_t*)dst;
  uint64_t* src64 = (uint64_t*)src;

  #pragma clang loop unroll(full)
  for (int i = 0; i < 8; i++) {
    dst64[i] = src64[i];
  }
}

static __inline__ uint64_t widen8to64(const uint8_t value) {
  return value | (value << 8) | (value << 16) | (value << 24);
}

static __inline__ void memset16(void* dst, const uint8_t value) {
  uint64_t val = widen8to64(value);
  uint64_t* dst64 = (uint64_t*)dst;

  dst64[0] = val;
  dst64[1] = val;
}

static __inline__ void memset32(void* dst, const uint8_t value) {
  uint64_t val = widen8to64(value);
  uint64_t* dst64 = (uint64_t*)dst;

  #pragma clang loop unroll(full)
  for (int i = 0; i < 4; i++) {
    dst64[i] = val;
  }
}

static __inline__ void memset64(void* dst, const uint8_t value) {
  uint64_t val = widen8to64(value);
  uint64_t* dst64 = (uint64_t*)dst;

  #pragma clang loop unroll(full)
  for (int i = 0; i < 8; i++) {
    dst64[i] = val;
  }
}

static __inline__ void memset128(void* dst, const uint8_t value) {
  uint64_t val = widen8to64(value);
  uint64_t* dst64 = (uint64_t*)dst;

  #pragma clang loop unroll(full)
  for (int i = 0; i < 16; i++) {
    dst64[i] = val;
  }
}


//////////////////////////////////////////////////////////////////////////

#define sha256_block_size 64
#define sha256_hash_size 32
#define sha224_hash_size 28
#define ROTR32(dword, n) ((dword) >> (n) ^ ((dword) << (32 - (n))))
#define bswap_32(x) __builtin_bswap32(x)

struct sha256_ctx {
  uint32_t message[16];   /* 512-bit buffer for leftovers */
  uint64_t length;        /* number of processed bytes */
  uint32_t hash[8];       /* 256-bit algorithm internal hashing state */
  uint32_t digest_length; /* length of the algorithm digest in bytes */
};

struct sha256_ctx sctx;
struct sha256_ctx* ctx = &sctx;

/* SHA-224 and SHA-256 constants for 64 rounds. These words represent
 * the first 32 bits of the fractional parts of the cube
 * roots of the first 64 prime numbers. */
static const uint32_t rhash_k256[64] = {
  0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1,
  0x923f82a4, 0xab1c5ed5, 0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3,
  0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174, 0xe49b69c1, 0xefbe4786,
  0x0fc19dc6, 0x240ca1cc, 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
  0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 0xd5a79147,
  0x06ca6351, 0x14292967, 0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13,
  0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85, 0xa2bfe8a1, 0xa81a664b,
  0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
  0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a,
  0x5b9cca4f, 0x682e6ff3, 0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208,
  0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2
};

/* The SHA256/224 functions defined by FIPS 180-3, 4.1.2 */
/* Optimized version of Ch(x,y,z)=((x & y) | (~x & z)) */
#define Ch(x, y, z) ((z) ^ ((x) & ((y) ^ (z))))
/* Optimized version of Maj(x,y,z)=((x & y) ^ (x & z) ^ (y & z)) */
#define Maj(x, y, z) (((x) & (y)) ^ ((z) & ((x) ^ (y))))

#define Sigma0(x) (ROTR32((x), 2) ^ ROTR32((x), 13) ^ ROTR32((x), 22))
#define Sigma1(x) (ROTR32((x), 6) ^ ROTR32((x), 11) ^ ROTR32((x), 25))
#define sigma0(x) (ROTR32((x), 7) ^ ROTR32((x), 18) ^ ((x) >> 3))
#define sigma1(x) (ROTR32((x), 17) ^ ROTR32((x), 19) ^ ((x) >> 10))

/* Recalculate element n-th of circular buffer W using formula
 *   W[n] = sigma1(W[n - 2]) + W[n - 7] + sigma0(W[n - 15]) + W[n - 16]; */
#define RECALCULATE_W(W, n) \
  (W[n] +=                  \
   (sigma1(W[(n - 2) & 15]) + W[(n - 7) & 15] + sigma0(W[(n - 15) & 15])))

#define ROUND(a, b, c, d, e, f, g, h, k, data)              \
  {                                                         \
    uint32_t T1 = h + Sigma1(e) + Ch(e, f, g) + k + (data); \
    d += T1, h = T1 + Sigma0(a) + Maj(a, b, c);             \
  }
#define ROUND_1_16(a, b, c, d, e, f, g, h, n) \
  ROUND(a, b, c, d, e, f, g, h, rhash_k256[n], W[n] = bswap_32(block[n]))
#define ROUND_17_64(a, b, c, d, e, f, g, h, n) \
  ROUND(a, b, c, d, e, f, g, h, k[n], RECALCULATE_W(W, n))

/**
 * Initialize context before calculaing hash.
 *
 */
void sha256_init() {
  /* Initial values. These words were obtained by taking the first 32
   * bits of the fractional parts of the square roots of the first
   * eight prime numbers. */
  static const uint32_t SHA256_H0[8] = {
    0x6a09e667, 0xbb67ae85, 0x3c6ef372, 0xa54ff53a,
    0x510e527f, 0x9b05688c, 0x1f83d9ab, 0x5be0cd19
  };

  ctx->length = 0;
  ctx->digest_length = sha256_hash_size;

  /* initialize algorithm state */

  #pragma clang loop vectorize(enable)
  for (uint8_t i = 0; i < 8; i += 2) {
    *(uint64_t*)&ctx->hash[i] = *(uint64_t*)&SHA256_H0[i];
  }
}

/**
 * Initialize context before calculaing hash.
 *
 */
void sha224_init() {
  /* Initial values from FIPS 180-3. These words were obtained by taking
   * bits from 33th to 64th of the fractional parts of the square
   * roots of ninth through sixteenth prime numbers. */
  static const uint32_t SHA224_H0[8] = {
    0xc1059ed8, 0x367cd507, 0x3070dd17, 0xf70e5939,
    0xffc00b31, 0x68581511, 0x64f98fa7, 0xbefa4fa4
  };

  ctx->length = 0;
  ctx->digest_length = sha224_hash_size;

  #pragma clang loop vectorize(enable)
  for (uint8_t i = 0; i < 8; i += 2) {
    *(uint64_t*)&ctx->hash[i] = *(uint64_t*)&SHA224_H0[i];
  }
}

/**
 * The core transformation. Process a 512-bit block.
 *
 * @param hash algorithm state
 * @param block the message block to process
 */
static void sha256_process_block(uint32_t hash[8], uint32_t block[16]) {
  uint32_t A, B, C, D, E, F, G, H;
  uint32_t W[16];
  const uint32_t* k;
  int i;

  A = hash[0], B = hash[1], C = hash[2], D = hash[3];
  E = hash[4], F = hash[5], G = hash[6], H = hash[7];

  /* Compute SHA using alternate Method: FIPS 180-3 6.1.3 */
  ROUND_1_16(A, B, C, D, E, F, G, H, 0);
  ROUND_1_16(H, A, B, C, D, E, F, G, 1);
  ROUND_1_16(G, H, A, B, C, D, E, F, 2);
  ROUND_1_16(F, G, H, A, B, C, D, E, 3);
  ROUND_1_16(E, F, G, H, A, B, C, D, 4);
  ROUND_1_16(D, E, F, G, H, A, B, C, 5);
  ROUND_1_16(C, D, E, F, G, H, A, B, 6);
  ROUND_1_16(B, C, D, E, F, G, H, A, 7);
  ROUND_1_16(A, B, C, D, E, F, G, H, 8);
  ROUND_1_16(H, A, B, C, D, E, F, G, 9);
  ROUND_1_16(G, H, A, B, C, D, E, F, 10);
  ROUND_1_16(F, G, H, A, B, C, D, E, 11);
  ROUND_1_16(E, F, G, H, A, B, C, D, 12);
  ROUND_1_16(D, E, F, G, H, A, B, C, 13);
  ROUND_1_16(C, D, E, F, G, H, A, B, 14);
  ROUND_1_16(B, C, D, E, F, G, H, A, 15);

  #pragma clang loop vectorize(enable)
  for (i = 16, k = &rhash_k256[16]; i < 64; i += 16, k += 16) {
    ROUND_17_64(A, B, C, D, E, F, G, H, 0);
    ROUND_17_64(H, A, B, C, D, E, F, G, 1);
    ROUND_17_64(G, H, A, B, C, D, E, F, 2);
    ROUND_17_64(F, G, H, A, B, C, D, E, 3);
    ROUND_17_64(E, F, G, H, A, B, C, D, 4);
    ROUND_17_64(D, E, F, G, H, A, B, C, 5);
    ROUND_17_64(C, D, E, F, G, H, A, B, 6);
    ROUND_17_64(B, C, D, E, F, G, H, A, 7);
    ROUND_17_64(A, B, C, D, E, F, G, H, 8);
    ROUND_17_64(H, A, B, C, D, E, F, G, 9);
    ROUND_17_64(G, H, A, B, C, D, E, F, 10);
    ROUND_17_64(F, G, H, A, B, C, D, E, 11);
    ROUND_17_64(E, F, G, H, A, B, C, D, 12);
    ROUND_17_64(D, E, F, G, H, A, B, C, 13);
    ROUND_17_64(C, D, E, F, G, H, A, B, 14);
    ROUND_17_64(B, C, D, E, F, G, H, A, 15);
  }

  hash[0] += A, hash[1] += B, hash[2] += C, hash[3] += D;
  hash[4] += E, hash[5] += F, hash[6] += G, hash[7] += H;
}

/**
 * Calculate message hash.
 * Can be called repeatedly with chunks of the message to be hashed.
 *
 * @param size length of the message chunk
 */
WASM_EXPORT
void Hash_Update(uint32_t size) {
  const uint8_t* msg = main_buffer;
  uint32_t index = (uint32_t)ctx->length & 63;
  ctx->length += size;

  /* fill partial block */
  if (index) {
    uint32_t left = sha256_block_size - index;
    uint32_t end = size < left ? size : left;
    uint8_t* message8 = (uint8_t*)ctx->message;
    for (uint8_t i = 0; i < end; i++) {
      *(message8 + index + i) = msg[i];
    }
    if (size < left) return;

    /* process partial block */
    sha256_process_block(ctx->hash, (uint32_t*)ctx->message);
    msg += left;
    size -= left;
  }

  while (size >= sha256_block_size) {
    uint32_t* aligned_message_block = (uint32_t*)msg;

    sha256_process_block(ctx->hash, aligned_message_block);
    msg += sha256_block_size;
    size -= sha256_block_size;
  }

  if (size) {
    /* save leftovers */
    for (uint8_t i = 0; i < size; i++) {
      *(((uint8_t*)ctx->message) + i) = msg[i];
    }
  }
}

/**
 * Store calculated hash into the given array.
 *
 */
WASM_EXPORT
void Hash_Final() {
  uint32_t index = ((uint32_t)ctx->length & 63) >> 2;
  uint32_t shift = ((uint32_t)ctx->length & 3) * 8;

  /* pad message and run for last block */

  /* append the byte 0x80 to the message */
  ctx->message[index] &= ~(0xFFFFFFFFu << shift);
  ctx->message[index++] ^= 0x80u << shift;

  /* if no room left in the message to store 64-bit message length */
  if (index > 14) {
    /* then fill the rest with zeros and process it */
    while (index < 16) {
      ctx->message[index++] = 0;
    }
    sha256_process_block(ctx->hash, ctx->message);
    index = 0;
  }

  while (index < 14) {
    ctx->message[index++] = 0;
  }

  ctx->message[14] = bswap_32((uint32_t)(ctx->length >> 29));
  ctx->message[15] = bswap_32((uint32_t)(ctx->length << 3));
  sha256_process_block(ctx->hash, ctx->message);

  #pragma clang loop vectorize(enable)
  for (int32_t i = 7; i >= 0; i--) {
    ctx->hash[i] = bswap_32(ctx->hash[i]);
  }

  for (uint8_t i = 0; i < ctx->digest_length; i++) {
    main_buffer[i] = *(((uint8_t*)ctx->hash) + i);
  }
}

WASM_EXPORT
uint32_t Hash_Init(uint32_t bits) {
  if (bits == 224) {
    sha224_init();
  } else {
    sha256_init();
  }
  return 0;
}

WASM_EXPORT
const uint32_t STATE_SIZE = sizeof(*ctx); 

WASM_EXPORT
uint8_t* Hash_GetState() {
  return (uint8_t*) ctx;
}

WASM_EXPORT
uint32_t GetBufferPtr() {
  return (uint32_t) main_buffer;
}