File size: 12,759 Bytes
21dd449 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 |
/* sha256.c - an implementation of SHA-256/224 hash functions
* based on FIPS 180-3 (Federal Information Processing Standart).
*
* Copyright (c) 2010, Aleksey Kravchenko <rhash.admin@gmail.com>
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH
* REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
* AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT,
* INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM
* LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE
* OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
* PERFORMANCE OF THIS SOFTWARE.
* Modified for hash-wasm by Dani Biró
*/
#define WITH_BUFFER
//////////////////////////////////////////////////////////////////////////
#include <stdint.h>
#include <stdalign.h>
#ifndef NULL
#define NULL 0
#endif
#ifdef _MSC_VER
#define WASM_EXPORT
#define __inline__
#else
#define WASM_EXPORT __attribute__((visibility("default")))
#endif
#ifdef WITH_BUFFER
#define MAIN_BUFFER_SIZE 8 * 1024 * 1024
alignas(128) uint8_t main_buffer[MAIN_BUFFER_SIZE];
WASM_EXPORT
uint8_t *Hash_GetBuffer() {
return main_buffer;
}
#endif
// Sometimes LLVM emits these functions during the optimization step
// even with -nostdlib -fno-builtin flags
static __inline__ void* memcpy(void* dst, const void* src, uint32_t cnt) {
uint8_t *destination = dst;
const uint8_t *source = src;
while (cnt) {
*(destination++)= *(source++);
--cnt;
}
return dst;
}
static __inline__ void* memset(void* dst, const uint8_t value, uint32_t cnt) {
uint8_t *p = dst;
while (cnt--) {
*p++ = value;
}
return dst;
}
static __inline__ void* memcpy2(void* dst, const void* src, uint32_t cnt) {
uint64_t *destination64 = dst;
const uint64_t *source64 = src;
while (cnt >= 8) {
*(destination64++)= *(source64++);
cnt -= 8;
}
uint8_t *destination = (uint8_t*)destination64;
const uint8_t *source = (uint8_t*)source64;
while (cnt) {
*(destination++)= *(source++);
--cnt;
}
return dst;
}
static __inline__ void memcpy16(void* dst, const void* src) {
uint64_t* dst64 = (uint64_t*)dst;
uint64_t* src64 = (uint64_t*)src;
dst64[0] = src64[0];
dst64[1] = src64[1];
}
static __inline__ void memcpy32(void* dst, const void* src) {
uint64_t* dst64 = (uint64_t*)dst;
uint64_t* src64 = (uint64_t*)src;
#pragma clang loop unroll(full)
for (int i = 0; i < 4; i++) {
dst64[i] = src64[i];
}
}
static __inline__ void memcpy64(void* dst, const void* src) {
uint64_t* dst64 = (uint64_t*)dst;
uint64_t* src64 = (uint64_t*)src;
#pragma clang loop unroll(full)
for (int i = 0; i < 8; i++) {
dst64[i] = src64[i];
}
}
static __inline__ uint64_t widen8to64(const uint8_t value) {
return value | (value << 8) | (value << 16) | (value << 24);
}
static __inline__ void memset16(void* dst, const uint8_t value) {
uint64_t val = widen8to64(value);
uint64_t* dst64 = (uint64_t*)dst;
dst64[0] = val;
dst64[1] = val;
}
static __inline__ void memset32(void* dst, const uint8_t value) {
uint64_t val = widen8to64(value);
uint64_t* dst64 = (uint64_t*)dst;
#pragma clang loop unroll(full)
for (int i = 0; i < 4; i++) {
dst64[i] = val;
}
}
static __inline__ void memset64(void* dst, const uint8_t value) {
uint64_t val = widen8to64(value);
uint64_t* dst64 = (uint64_t*)dst;
#pragma clang loop unroll(full)
for (int i = 0; i < 8; i++) {
dst64[i] = val;
}
}
static __inline__ void memset128(void* dst, const uint8_t value) {
uint64_t val = widen8to64(value);
uint64_t* dst64 = (uint64_t*)dst;
#pragma clang loop unroll(full)
for (int i = 0; i < 16; i++) {
dst64[i] = val;
}
}
//////////////////////////////////////////////////////////////////////////
#define sha256_block_size 64
#define sha256_hash_size 32
#define sha224_hash_size 28
#define ROTR32(dword, n) ((dword) >> (n) ^ ((dword) << (32 - (n))))
#define bswap_32(x) __builtin_bswap32(x)
struct sha256_ctx {
uint32_t message[16]; /* 512-bit buffer for leftovers */
uint64_t length; /* number of processed bytes */
uint32_t hash[8]; /* 256-bit algorithm internal hashing state */
uint32_t digest_length; /* length of the algorithm digest in bytes */
};
struct sha256_ctx sctx;
struct sha256_ctx* ctx = &sctx;
/* SHA-224 and SHA-256 constants for 64 rounds. These words represent
* the first 32 bits of the fractional parts of the cube
* roots of the first 64 prime numbers. */
static const uint32_t rhash_k256[64] = {
0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1,
0x923f82a4, 0xab1c5ed5, 0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3,
0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174, 0xe49b69c1, 0xefbe4786,
0x0fc19dc6, 0x240ca1cc, 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 0xd5a79147,
0x06ca6351, 0x14292967, 0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13,
0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85, 0xa2bfe8a1, 0xa81a664b,
0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a,
0x5b9cca4f, 0x682e6ff3, 0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208,
0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2
};
/* The SHA256/224 functions defined by FIPS 180-3, 4.1.2 */
/* Optimized version of Ch(x,y,z)=((x & y) | (~x & z)) */
#define Ch(x, y, z) ((z) ^ ((x) & ((y) ^ (z))))
/* Optimized version of Maj(x,y,z)=((x & y) ^ (x & z) ^ (y & z)) */
#define Maj(x, y, z) (((x) & (y)) ^ ((z) & ((x) ^ (y))))
#define Sigma0(x) (ROTR32((x), 2) ^ ROTR32((x), 13) ^ ROTR32((x), 22))
#define Sigma1(x) (ROTR32((x), 6) ^ ROTR32((x), 11) ^ ROTR32((x), 25))
#define sigma0(x) (ROTR32((x), 7) ^ ROTR32((x), 18) ^ ((x) >> 3))
#define sigma1(x) (ROTR32((x), 17) ^ ROTR32((x), 19) ^ ((x) >> 10))
/* Recalculate element n-th of circular buffer W using formula
* W[n] = sigma1(W[n - 2]) + W[n - 7] + sigma0(W[n - 15]) + W[n - 16]; */
#define RECALCULATE_W(W, n) \
(W[n] += \
(sigma1(W[(n - 2) & 15]) + W[(n - 7) & 15] + sigma0(W[(n - 15) & 15])))
#define ROUND(a, b, c, d, e, f, g, h, k, data) \
{ \
uint32_t T1 = h + Sigma1(e) + Ch(e, f, g) + k + (data); \
d += T1, h = T1 + Sigma0(a) + Maj(a, b, c); \
}
#define ROUND_1_16(a, b, c, d, e, f, g, h, n) \
ROUND(a, b, c, d, e, f, g, h, rhash_k256[n], W[n] = bswap_32(block[n]))
#define ROUND_17_64(a, b, c, d, e, f, g, h, n) \
ROUND(a, b, c, d, e, f, g, h, k[n], RECALCULATE_W(W, n))
/**
* Initialize context before calculaing hash.
*
*/
void sha256_init() {
/* Initial values. These words were obtained by taking the first 32
* bits of the fractional parts of the square roots of the first
* eight prime numbers. */
static const uint32_t SHA256_H0[8] = {
0x6a09e667, 0xbb67ae85, 0x3c6ef372, 0xa54ff53a,
0x510e527f, 0x9b05688c, 0x1f83d9ab, 0x5be0cd19
};
ctx->length = 0;
ctx->digest_length = sha256_hash_size;
/* initialize algorithm state */
#pragma clang loop vectorize(enable)
for (uint8_t i = 0; i < 8; i += 2) {
*(uint64_t*)&ctx->hash[i] = *(uint64_t*)&SHA256_H0[i];
}
}
/**
* Initialize context before calculaing hash.
*
*/
void sha224_init() {
/* Initial values from FIPS 180-3. These words were obtained by taking
* bits from 33th to 64th of the fractional parts of the square
* roots of ninth through sixteenth prime numbers. */
static const uint32_t SHA224_H0[8] = {
0xc1059ed8, 0x367cd507, 0x3070dd17, 0xf70e5939,
0xffc00b31, 0x68581511, 0x64f98fa7, 0xbefa4fa4
};
ctx->length = 0;
ctx->digest_length = sha224_hash_size;
#pragma clang loop vectorize(enable)
for (uint8_t i = 0; i < 8; i += 2) {
*(uint64_t*)&ctx->hash[i] = *(uint64_t*)&SHA224_H0[i];
}
}
/**
* The core transformation. Process a 512-bit block.
*
* @param hash algorithm state
* @param block the message block to process
*/
static void sha256_process_block(uint32_t hash[8], uint32_t block[16]) {
uint32_t A, B, C, D, E, F, G, H;
uint32_t W[16];
const uint32_t* k;
int i;
A = hash[0], B = hash[1], C = hash[2], D = hash[3];
E = hash[4], F = hash[5], G = hash[6], H = hash[7];
/* Compute SHA using alternate Method: FIPS 180-3 6.1.3 */
ROUND_1_16(A, B, C, D, E, F, G, H, 0);
ROUND_1_16(H, A, B, C, D, E, F, G, 1);
ROUND_1_16(G, H, A, B, C, D, E, F, 2);
ROUND_1_16(F, G, H, A, B, C, D, E, 3);
ROUND_1_16(E, F, G, H, A, B, C, D, 4);
ROUND_1_16(D, E, F, G, H, A, B, C, 5);
ROUND_1_16(C, D, E, F, G, H, A, B, 6);
ROUND_1_16(B, C, D, E, F, G, H, A, 7);
ROUND_1_16(A, B, C, D, E, F, G, H, 8);
ROUND_1_16(H, A, B, C, D, E, F, G, 9);
ROUND_1_16(G, H, A, B, C, D, E, F, 10);
ROUND_1_16(F, G, H, A, B, C, D, E, 11);
ROUND_1_16(E, F, G, H, A, B, C, D, 12);
ROUND_1_16(D, E, F, G, H, A, B, C, 13);
ROUND_1_16(C, D, E, F, G, H, A, B, 14);
ROUND_1_16(B, C, D, E, F, G, H, A, 15);
#pragma clang loop vectorize(enable)
for (i = 16, k = &rhash_k256[16]; i < 64; i += 16, k += 16) {
ROUND_17_64(A, B, C, D, E, F, G, H, 0);
ROUND_17_64(H, A, B, C, D, E, F, G, 1);
ROUND_17_64(G, H, A, B, C, D, E, F, 2);
ROUND_17_64(F, G, H, A, B, C, D, E, 3);
ROUND_17_64(E, F, G, H, A, B, C, D, 4);
ROUND_17_64(D, E, F, G, H, A, B, C, 5);
ROUND_17_64(C, D, E, F, G, H, A, B, 6);
ROUND_17_64(B, C, D, E, F, G, H, A, 7);
ROUND_17_64(A, B, C, D, E, F, G, H, 8);
ROUND_17_64(H, A, B, C, D, E, F, G, 9);
ROUND_17_64(G, H, A, B, C, D, E, F, 10);
ROUND_17_64(F, G, H, A, B, C, D, E, 11);
ROUND_17_64(E, F, G, H, A, B, C, D, 12);
ROUND_17_64(D, E, F, G, H, A, B, C, 13);
ROUND_17_64(C, D, E, F, G, H, A, B, 14);
ROUND_17_64(B, C, D, E, F, G, H, A, 15);
}
hash[0] += A, hash[1] += B, hash[2] += C, hash[3] += D;
hash[4] += E, hash[5] += F, hash[6] += G, hash[7] += H;
}
/**
* Calculate message hash.
* Can be called repeatedly with chunks of the message to be hashed.
*
* @param size length of the message chunk
*/
WASM_EXPORT
void Hash_Update(uint32_t size) {
const uint8_t* msg = main_buffer;
uint32_t index = (uint32_t)ctx->length & 63;
ctx->length += size;
/* fill partial block */
if (index) {
uint32_t left = sha256_block_size - index;
uint32_t end = size < left ? size : left;
uint8_t* message8 = (uint8_t*)ctx->message;
for (uint8_t i = 0; i < end; i++) {
*(message8 + index + i) = msg[i];
}
if (size < left) return;
/* process partial block */
sha256_process_block(ctx->hash, (uint32_t*)ctx->message);
msg += left;
size -= left;
}
while (size >= sha256_block_size) {
uint32_t* aligned_message_block = (uint32_t*)msg;
sha256_process_block(ctx->hash, aligned_message_block);
msg += sha256_block_size;
size -= sha256_block_size;
}
if (size) {
/* save leftovers */
for (uint8_t i = 0; i < size; i++) {
*(((uint8_t*)ctx->message) + i) = msg[i];
}
}
}
/**
* Store calculated hash into the given array.
*
*/
WASM_EXPORT
void Hash_Final() {
uint32_t index = ((uint32_t)ctx->length & 63) >> 2;
uint32_t shift = ((uint32_t)ctx->length & 3) * 8;
/* pad message and run for last block */
/* append the byte 0x80 to the message */
ctx->message[index] &= ~(0xFFFFFFFFu << shift);
ctx->message[index++] ^= 0x80u << shift;
/* if no room left in the message to store 64-bit message length */
if (index > 14) {
/* then fill the rest with zeros and process it */
while (index < 16) {
ctx->message[index++] = 0;
}
sha256_process_block(ctx->hash, ctx->message);
index = 0;
}
while (index < 14) {
ctx->message[index++] = 0;
}
ctx->message[14] = bswap_32((uint32_t)(ctx->length >> 29));
ctx->message[15] = bswap_32((uint32_t)(ctx->length << 3));
sha256_process_block(ctx->hash, ctx->message);
#pragma clang loop vectorize(enable)
for (int32_t i = 7; i >= 0; i--) {
ctx->hash[i] = bswap_32(ctx->hash[i]);
}
for (uint8_t i = 0; i < ctx->digest_length; i++) {
main_buffer[i] = *(((uint8_t*)ctx->hash) + i);
}
}
WASM_EXPORT
uint32_t Hash_Init(uint32_t bits) {
if (bits == 224) {
sha224_init();
} else {
sha256_init();
}
return 0;
}
WASM_EXPORT
const uint32_t STATE_SIZE = sizeof(*ctx);
WASM_EXPORT
uint8_t* Hash_GetState() {
return (uint8_t*) ctx;
}
WASM_EXPORT
uint32_t GetBufferPtr() {
return (uint32_t) main_buffer;
}
|