bert-base-nsmc / README.md
codingtree's picture
Upload TFBertForSequenceClassification
f60fd86 verified
|
raw
history blame
2.24 kB
metadata
library_name: transformers
license: cc-by-sa-4.0
base_model: klue/bert-base
tags:
  - generated_from_keras_callback
model-index:
  - name: bert-base-nsmc
    results: []

bert-base-nsmc

This model is a fine-tuned version of klue/bert-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Train Loss: 0.0298
  • Train Accuracy: 1.0
  • Validation Loss: 0.2335
  • Validation Accuracy: 1.0
  • Epoch: 4

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'module': 'transformers.optimization_tf', 'class_name': 'WarmUp', 'config': {'initial_learning_rate': 5e-05, 'decay_schedule_fn': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 5e-05, 'decay_steps': 4.5, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'warmup_steps': 0.5, 'power': 1.0, 'name': None}, 'registered_name': 'WarmUp'}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.1}
  • training_precision: float32

Training results

Train Loss Train Accuracy Validation Loss Validation Accuracy Epoch
0.5729 1.0 0.5564 1.0 0
0.4097 1.0 0.3896 1.0 1
0.1165 1.0 0.2967 1.0 2
0.0442 1.0 0.2517 1.0 3
0.0298 1.0 0.2335 1.0 4

Framework versions

  • Transformers 4.48.3
  • TensorFlow 2.18.0
  • Tokenizers 0.21.0