Phi-4 Magpie Reasoning GGUF v4

This is a GGUF format version of the Phi-4 model fine-tuned on the Magpie dataset (v4).

Model Details

  • Base Model: Microsoft Phi-4 (14B parameters)
  • Available Formats:
    • GGUF FP16 (full precision)
    • GGUF Q8 (8-bit quantization)
  • Fine-tuning: LoRA with merged weights
  • Training Dataset: Magpie Reasoning Dataset
  • Version: 4

Training Data

  • 2,200 excellent quality examples
  • 3,000 good quality examples
  • Total training samples: 5,200

Evaluation Dataset

  • 5 very hard + excellent quality examples
  • 5 medium + excellent quality examples
  • 5 very easy + excellent quality examples

Technical Details

  • LoRA Parameters:

    • Rank (r): 24
    • Alpha: 48
    • Target Modules: q_proj, k_proj, v_proj, o_proj
    • Dropout: 0.05
  • Training Configuration:

    • Epochs: 5
    • Learning Rate: 3e-5
    • Batch Size: 1 with gradient accumulation steps of 16
    • Optimizer: AdamW (Fused)
    • Precision: BFloat16 during training
    • Available Formats: FP16 and 8-bit quantized GGUF

Usage with llama.cpp

For CPU inference with the Q8 model:

main -m phi4-magpie-reasoning-q8.gguf -n 512 --repeat_penalty 1.1 --color -i -r User:

For GPU inference with the FP16 model:

main -m phi4-magpie-reasoning-fp16.gguf -n 512 --repeat_penalty 1.1 --color -i -r User: --n-gpu-layers 35

Model Sizes

  • GGUF FP16 Format: ~28GB
  • GGUF Q8 Format: ~14GB
  • Original Model (14B parameters)

License

This model inherits the license terms from Microsoft Phi-4 and the Magpie dataset.

Downloads last month
5
GGUF
Model size
14.7B params
Architecture
phi3
Hardware compatibility
Log In to view the estimation
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for bveiseh/phi4-magpie-reasoning-v4-gguf

Base model

microsoft/phi-4
Quantized
(135)
this model

Dataset used to train bveiseh/phi4-magpie-reasoning-v4-gguf