Mitra Classifier
Mitra classifier is a tabular foundation model that is pre-trained on purely synthetic datasets sampled from a mix of random classifiers.
Architecture
Mitra is based on a 12-layer Transformer of 72 M parameters, pre-trained by incorporating an in-context learning paradigm.
Usage
To use Mitra classifier, install AutoGluon by running:
pip install uv
uv pip install autogluon.tabular[mitra]
A minimal example showing how to perform inference using the Mitra classifier:
import pandas as pd
from autogluon.tabular import TabularDataset, TabularPredictor
from sklearn.model_selection import train_test_split
from sklearn.datasets import load_wine
# Load datasets
wine_data = load_wine()
wine_df = pd.DataFrame(wine_data.data, columns=wine_data.feature_names)
wine_df['target'] = wine_data.target
print("Dataset shapes:")
print(f"Wine: {wine_df.shape}")
# Create train/test splits (80/20)
wine_train, wine_test = train_test_split(wine_df, test_size=0.2, random_state=42, stratify=wine_df['target'])
print("Training set sizes:")
print(f"Wine: {len(wine_train)} samples")
# Convert to TabularDataset
wine_train_data = TabularDataset(wine_train)
wine_test_data = TabularDataset(wine_test)
# Create predictor with Mitra
print("Training Mitra classifier on classification dataset...")
mitra_predictor = TabularPredictor(label='target')
mitra_predictor.fit(
wine_train_data,
hyperparameters={
'MITRA': {'fine_tune': False}
},
)
print("\nMitra training completed!")
# Make predictions
mitra_predictions = mitra_predictor.predict(wine_test_data)
print("Sample Mitra predictions:")
print(mitra_predictions.head(10))
# Show prediction probabilities for first few samples
mitra_predictions = mitra_predictor.predict_proba(wine_test_data)
print(mitra_predictions.head())
# Show model leaderboard
print("\nMitra Model Leaderboard:")
mitra_predictor.leaderboard(wine_test_data)
A minimal example showing how to perform fine-tuning using the Mitra classifier:
mitra_predictor_ft = TabularPredictor(label='target')
mitra_predictor_ft.fit(
wine_train_data,
hyperparameters={
'MITRA': {'fine_tune': True, 'fine_tune_steps': 10}
},
time_limit=120, # 2 minutes
)
print("\nMitra fine-tuning completed!")
# Show model leaderboard
print("\nMitra Model Leaderboard:")
mitra_predictor_ft.leaderboard(wine_test_data)
License
This project is licensed under the Apache-2.0 License.
Reference
Amazon Science blog: Mitra: Mixed synthetic priors for enhancing tabular foundation models
- Downloads last month
- 92,432
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
1
Ask for provider support