library_name: transformers
datasets:
- glaiveai/glaive-code-assistant
language:
- en
base_model:
- mistralai/Mistral-7B-v0.1
license: apache-2.0
Model Card for Model ID
Model Summary
The goal of this model is to improve the quality and efficiency of code generation from natural language prompts, particularly for Python, since this is the programming language I use most often. Many LLMs produce code that is outdated, inefficient, and bugged. Creating a custom LLM that is able to produce efficient and quality code allows the user to reduce the amount of time it takes to write code and more quickly troubleshoot bugged code. Current models may inadvertently introduce vulnerabilities or generate code that does not adhere to current norms due to the training code data occasionally lacking the safety or output aligned with human coding preferences (Jiang et al., 2024). Additionally, current models are frequently trained on large datasets that encompass a wide range of programming languages, giving the model a roughly equal amount of training time on many languages, which may affect performance on more popular languages (Jiang et al., 2024). To combat this, I selected a model with 7 billion parameters that had a relatively strong performance at baseline on solving code tasks and trained the model on a large code generation dataset (~136,000 rows) that was ~60% Python code. I utilized a Program of Thought (PoT) prompting approach and LoRA training method to create an updated model. Finally, I compared the benchmark performances of MBPP, HumanEval, and MMLU on the updated model to the baseline model. The updated model had little improvement from the base model. For the tested benchmarks, MBPP rose from 37.6% to 40.2% on the first pass, and HumanEval first-pass accuracy dropped from 0.6% to 0%; however, the code appeared to have better format than the base model, and MMLU stayed about the same, with 59.6% at baseline and 59.1% after training.
Model Description
- Developed by: Alden Swain
- Model type: Text Generation
- Language(s) (NLP): English
- License: Apache 2.0
Model Sources
- Repository: mistralai/Mistral-7B-v0.1
- Paper: Mistral-7B
Uses
Direct Use
[More Information Needed]
Downstream Use [optional]
[More Information Needed]
Out-of-Scope Use
[More Information Needed]
Bias, Risks, and Limitations
[More Information Needed]
Recommendations
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
Training Details
Training Data
[More Information Needed]
Training Procedure
Preprocessing [optional]
[More Information Needed]
Training Hyperparameters
- Training regime: [More Information Needed]
Speeds, Sizes, Times [optional]
[More Information Needed]
Evaluation
Testing Data, Factors & Metrics
Testing Data
[More Information Needed]
Factors
[More Information Needed]
Metrics
[More Information Needed]
Results
[More Information Needed]
Summary
Model Examination [optional]
[More Information Needed]
Environmental Impact
Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).
- Hardware Type: [More Information Needed]
- Hours used: [More Information Needed]
- Cloud Provider: [More Information Needed]
- Compute Region: [More Information Needed]
- Carbon Emitted: [More Information Needed]
Technical Specifications [optional]
Model Architecture and Objective
[More Information Needed]
Compute Infrastructure
[More Information Needed]
Hardware
[More Information Needed]
Software
[More Information Needed]
Citation [optional]
BibTeX:
[More Information Needed]
APA:
[More Information Needed]
Glossary [optional]
[More Information Needed]
More Information [optional]
[More Information Needed]
Model Card Authors [optional]
[More Information Needed]
Model Card Contact
[More Information Needed]