DistilRoBERTa finetuned for Emotion Recognition Task.

๐Ÿ—จ๏ธ Base Model: distilbert/distilroberta-base

๐ŸŽฏ Accuracy: 0.9006
โœ”๏ธ F1 Score: 0.8991
๐Ÿ“‰ Loss: 0.3183

Training Hyperparameters

train_epochs: 20
Batch train_batch_size: 32
warmup_steps: 50
weight_decay: 0.02

Datasets:

1๏ธโƒฃ Emotion Dataset,
2๏ธโƒฃ Emotion Dataset,
3๏ธโƒฃ Emotion Dataset,

Emotions

(0) anger (1) disgust (2) fear (3) joy (4) love (5) neutral (6) sadness (7) surprise

Classification Report

              precision    recall  f1-score   support

       anger     0.8970    0.8714    0.8840      3679
     disgust     0.9777    1.0000    0.9887      3680
        fear     0.9035    0.8647    0.8836      3680
         joy     0.8348    0.7399    0.7845      3680
        love     0.9756    1.0000    0.9877      3680
     neutral     0.9351    0.9984    0.9657      3680
     sadness     0.8649    0.7916    0.8266      3680
    surprise     0.8133    0.9389    0.8716      3680

    accuracy                         0.9006     29439
   macro avg     0.9002    0.9006    0.8991     29439
weighted avg     0.9002    0.9006    0.8991     29439

Sneak Peak: To be used as a part of a larger multimodal emotion recognition framework. (Late Fusion, Early Fusion and RL based approach ๐Ÿ˜ฑ)

Downloads last month
12
Safetensors
Model size
82.1M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for argish/text-emotion-classifier-distilroberta

Finetuned
(630)
this model