Stance detection model distilled from a news dataset label by a larger model. The larger model was trained on a combination of stance datasets in the literature:

FNC-1 (Pomerleau and Rao, 2017), Perspectrum (Chen et al., 2019), ARC (Habernal et al., 2017), Emergent (Ferreira and Vlachos, 2016) NewsClaims (Reddy et al., 2021)7.

Achieves a .0.5712643678160919 f1-score on hand labeled indomain news data

To run:

    from transformers import AutoTokenizer, T5ForConditionalGeneration
    model = T5ForConditionalGeneration.from_pretrained('alex2awesome/stance-detection-t5')

    tokenizer = AutoTokenizer.from_pretrained(model_name_or_path)
    tokenizer_with_prefix_space = AutoTokenizer.from_pretrained(model_name_or_path, add_prefix_space=True)
    def get_tokens_as_tuple(word):
        return tuple(tokenizer_with_prefix_space([word], add_special_tokens=False).input_ids[0])

    input_ids = tokenizer(text, return_tensors="pt").input_ids
    y_pred_gen_output = model.generate(
        input_ids,
        renormalize_logits=True, 
        sequence_bias= {
            get_tokens_as_tuple('__Affirm__'):     0.143841,
            get_tokens_as_tuple('__Discuss__'):   -0.294732,
            get_tokens_as_tuple('__Neutral__'):   -0.103820,
            get_tokens_as_tuple('__Refute__'):     0.637734,
        },
    )

You can tweak the class weights yourself if you want.
Downloads last month
49
Safetensors
Model size
223M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support