M2_Encoder_Large / vlmo /modules /multiway_transformer.py
acai66's picture
Upload folder using huggingface_hub
3440f83 verified
""" Vision Transformer (ViT) in PyTorch
A PyTorch implement of Vision Transformers as described in
'An Image Is Worth 16 x 16 Words: Transformers for Image Recognition at Scale' - https://arxiv.org/abs/2010.11929
The official jax code is released and available at https://github.com/google-research/vision_transformer
Acknowledgments:
* The paper authors for releasing code and weights, thanks!
* I fixed my class token impl based on Phil Wang's https://github.com/lucidrains/vit-pytorch ... check it out
for some einops/einsum fun
* Simple transformer style inspired by Andrej Karpathy's https://github.com/karpathy/minGPT
* Bert reference code checks against Huggingface Transformers and Tensorflow Bert
DeiT model defs and weights from https://github.com/facebookresearch/deit,
paper `DeiT: Data-efficient Image Transformers` - https://arxiv.org/abs/2012.12877
Hacked together by / Copyright 2020 Ross Wightman
"""
from functools import partial
import torch
import torch.nn as nn
import torch.nn.functional as F
from timm.models.layers import DropPath, to_2tuple, trunc_normal_
from timm.models.registry import register_model
from pytorch_lightning.utilities.rank_zero import rank_zero_info
class Mlp(nn.Module):
def __init__(
self,
in_features,
hidden_features=None,
out_features=None,
act_layer=nn.GELU,
drop=0.0,
):
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.fc1 = nn.Linear(in_features, hidden_features)
self.act = act_layer()
self.fc2 = nn.Linear(hidden_features, out_features)
self.drop = nn.Dropout(drop)
def forward(self, x):
x = self.fc1(x)
x = self.act(x)
x = self.drop(x)
x = self.fc2(x)
x = self.drop(x)
return x
class Attention(nn.Module):
def __init__(
self,
dim,
num_heads=8,
qkv_bias=False,
qk_scale=None,
attn_drop=0.0,
proj_drop=0.0,
):
super().__init__()
self.num_heads = num_heads
head_dim = dim // num_heads
# NOTE scale factor was wrong in my original version, can set manually to be compat with prev weights
self.scale = qk_scale or head_dim**-0.5
self.qkv = nn.Linear(dim, dim * 3, bias=False)
if qkv_bias:
self.q_bias = nn.Parameter(torch.zeros(dim))
self.v_bias = nn.Parameter(torch.zeros(dim))
else:
self.q_bias = None
self.v_bias = None
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
def forward(self, x, mask=None, relative_position_bias=None):
B, N, C = x.shape
qkv_bias = None
if self.q_bias is not None:
qkv_bias = torch.cat((self.q_bias, torch.zeros_like(self.v_bias, requires_grad=False), self.v_bias))
qkv = F.linear(input=x, weight=self.qkv.weight, bias=qkv_bias)
qkv = qkv.reshape(B, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
q, k, v = (
qkv[0],
qkv[1],
qkv[2],
) # make torchscript happy (cannot use tensor as tuple)
q = q * self.scale
attn = q.float() @ k.float().transpose(-2, -1)
if relative_position_bias is not None:
attn = attn + relative_position_bias.unsqueeze(0)
if mask is not None:
mask = mask.bool()
attn = attn.masked_fill(~mask[:, None, None, :], float("-inf"))
attn = attn.softmax(dim=-1).type_as(x)
attn = self.attn_drop(attn)
x = (attn @ v).transpose(1, 2).reshape(B, N, C)
x = self.proj(x)
x = self.proj_drop(x)
return x
class Block(nn.Module):
def __init__(
self,
dim,
num_heads,
mlp_ratio=4.0,
qkv_bias=False,
qk_scale=None,
drop=0.0,
attn_drop=0.0,
drop_path=0.0,
act_layer=nn.GELU,
norm_layer=nn.LayerNorm,
with_vlffn=False,
layer_scale_init_values=0.1,
max_text_len=40,
):
super().__init__()
self.norm1 = norm_layer(dim)
self.attn = Attention(
dim,
num_heads=num_heads,
qkv_bias=qkv_bias,
qk_scale=qk_scale,
attn_drop=attn_drop,
proj_drop=drop,
)
# NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
self.norm2_text = norm_layer(dim)
self.norm2_imag = norm_layer(dim)
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp_text = Mlp(
in_features=dim,
hidden_features=mlp_hidden_dim,
act_layer=act_layer,
drop=drop,
)
self.mlp_imag = Mlp(
in_features=dim,
hidden_features=mlp_hidden_dim,
act_layer=act_layer,
drop=drop,
)
self.mlp_vl = None
if with_vlffn:
self.mlp_vl = Mlp(
in_features=dim,
hidden_features=mlp_hidden_dim,
act_layer=act_layer,
drop=drop,
)
self.norm2_vl = norm_layer(dim)
self.gamma_1 = (
nn.Parameter(layer_scale_init_values * torch.ones((dim)), requires_grad=True)
if layer_scale_init_values is not None
else 1.0
)
self.gamma_2 = (
nn.Parameter(layer_scale_init_values * torch.ones((dim)), requires_grad=True)
if layer_scale_init_values is not None
else 1.0
)
self.max_text_len = max_text_len
def forward(self, x, mask=None, modality_type=None, relative_position_bias=None):
x = x + self.drop_path(
self.gamma_1 * self.attn(self.norm1(x), mask=mask, relative_position_bias=relative_position_bias)
)
if modality_type == "image":
x = x + self.drop_path(self.gamma_2 * self.mlp_imag(self.norm2_imag(x)))
elif modality_type == "text":
x = x + self.drop_path(self.gamma_2 * self.mlp_text(self.norm2_text(x)))
else:
if self.mlp_vl is None:
x_text = x[:, : self.max_text_len]
x_imag = x[:, self.max_text_len :]
x_text = x_text + self.drop_path(self.gamma_2 * self.mlp_text(self.norm2_text(x_text)))
x_imag = x_imag + self.drop_path(self.gamma_2 * self.mlp_imag(self.norm2_imag(x_imag)))
x = torch.cat([x_text, x_imag], dim=1)
else:
x = x + self.drop_path(self.gamma_2 * self.mlp_vl(self.norm2_vl(x)))
return x
class PatchEmbed(nn.Module):
"""Image to Patch Embedding"""
def __init__(
self,
img_size=224,
patch_size=16,
in_chans=3,
embed_dim=768,
no_patch_embed_bias=False,
):
super().__init__()
img_size = to_2tuple(img_size)
patch_size = to_2tuple(patch_size)
num_patches = (img_size[1] // patch_size[1]) * (img_size[0] // patch_size[0])
self.patch_shape = (img_size[0] // patch_size[0], img_size[1] // patch_size[1])
self.img_size = img_size
self.patch_size = patch_size
self.num_patches = num_patches
self.proj = nn.Conv2d(
in_chans,
embed_dim,
kernel_size=patch_size,
stride=patch_size,
bias=False if no_patch_embed_bias else True,
)
def forward(self, x):
B, C, H, W = x.shape
assert (
H == self.img_size[0] and W == self.img_size[1]
), f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})."
# FIXME look at relaxing size constraints
x = self.proj(x)
return x
class MultiWayTransformer(nn.Module):
"""Vision Transformer
A PyTorch impl of : `An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale` -
https://arxiv.org/abs/2010.11929
"""
def __init__(
self,
img_size=224,
patch_size=16,
in_chans=3,
embed_dim=768,
depth=12,
num_heads=12,
mlp_ratio=4.0,
qkv_bias=True,
qk_scale=None,
drop_rate=0.0,
attn_drop_rate=0.0,
drop_path_rate=0.0,
norm_layer=None,
need_relative_position_embed=True,
use_abs_pos_emb=False,
layer_scale_init_values=0.1,
vlffn_start_layer_index=10,
config=None,
):
"""
Args:
img_size (int, tuple): input image size
patch_size (int, tuple): patch size
in_chans (int): number of input channels
num_classes (int): number of classes for classification head
embed_dim (int): embedding dimension
depth (int): depth of transformer
num_heads (int): number of attention heads
mlp_ratio (int): ratio of mlp hidden dim to embedding dim
qkv_bias (bool): enable bias for qkv if True
qk_scale (float): override default qk scale of head_dim ** -0.5 if set
drop_rate (float): dropout rate
attn_drop_rate (float): attention dropout rate
drop_path_rate (float): stochastic depth rate
norm_layer: (nn.Module): normalization layer
need_relative_position_embed (bool): enable relative position bias on self-attention
use_abs_pos_emb (bool): enable abs pos emb
layer_scale_init_values (float or None): layer scale init values, set None to disable
vlffn_start_layer_index (int): vl-ffn start index
config: (dict): other hyper from pytorch-lighting
"""
super().__init__()
drop_path_rate = drop_path_rate if config is None else config["drop_path_rate"]
rank_zero_info("drop path rate: {}".format(drop_path_rate))
self.use_abs_pos_emb = use_abs_pos_emb
self.need_relative_position_embed = need_relative_position_embed
self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models
norm_layer = norm_layer or partial(nn.LayerNorm, eps=1e-6)
self.patch_embed = PatchEmbed(
img_size=img_size,
patch_size=patch_size,
in_chans=in_chans,
embed_dim=embed_dim,
)
num_patches = self.patch_embed.num_patches
self.patch_size = patch_size
self.num_heads = num_heads
self.vlffn_start_layer_index = vlffn_start_layer_index
if config["loss_names"]["textmlm"] > 0:
self.vlffn_start_layer_index = depth
rank_zero_info(
"Set vlffn_start_layer_index={} for text-only pretraining".format(self.vlffn_start_layer_index)
)
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim)) if self.use_abs_pos_emb else None
self.pos_drop = nn.Dropout(p=drop_rate)
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule
self.blocks = nn.ModuleList(
[
Block(
dim=embed_dim,
num_heads=num_heads,
mlp_ratio=mlp_ratio,
qkv_bias=qkv_bias,
qk_scale=qk_scale,
drop=drop_rate,
attn_drop=attn_drop_rate,
drop_path=dpr[i],
norm_layer=norm_layer,
with_vlffn=(i >= self.vlffn_start_layer_index),
layer_scale_init_values=layer_scale_init_values,
max_text_len=config["max_text_len"],
)
for i in range(depth)
]
)
self.norm = norm_layer(embed_dim)
if self.pos_embed is not None:
trunc_normal_(self.pos_embed, std=0.02)
trunc_normal_(self.cls_token, std=0.02)
self.apply(self._init_weights)
def _init_weights(self, m):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight, std=0.02)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
@torch.jit.ignore
def no_weight_decay(self):
return {"pos_embed", "cls_token"}
def visual_embed(self, _x):
x = self.patch_embed(_x)
x = x.flatten(2).transpose(1, 2)
B, L, _ = x.shape
cls_tokens = self.cls_token.expand(B, -1, -1)
x = torch.cat((cls_tokens, x), dim=1)
if self.pos_embed is not None:
x = x + self.pos_embed
x = self.pos_drop(x)
x_mask = torch.ones(x.shape[0], x.shape[1])
return x, x_mask
# VLMo base/p16
@register_model
def vlmo_base_patch16(pretrained=False, **kwargs):
img_size = kwargs.pop("img_size", 224)
model = MultiWayTransformer(
img_size=img_size,
patch_size=16,
embed_dim=768,
depth=12,
num_heads=12,
mlp_ratio=4,
qkv_bias=True,
vlffn_start_layer_index=10,
norm_layer=partial(nn.LayerNorm, eps=1e-6),
**kwargs,
)
return model