|
""" Vision Transformer (ViT) in PyTorch |
|
|
|
A PyTorch implement of Vision Transformers as described in |
|
'An Image Is Worth 16 x 16 Words: Transformers for Image Recognition at Scale' - https://arxiv.org/abs/2010.11929 |
|
|
|
The official jax code is released and available at https://github.com/google-research/vision_transformer |
|
|
|
Acknowledgments: |
|
* The paper authors for releasing code and weights, thanks! |
|
* I fixed my class token impl based on Phil Wang's https://github.com/lucidrains/vit-pytorch ... check it out |
|
for some einops/einsum fun |
|
* Simple transformer style inspired by Andrej Karpathy's https://github.com/karpathy/minGPT |
|
* Bert reference code checks against Huggingface Transformers and Tensorflow Bert |
|
|
|
DeiT model defs and weights from https://github.com/facebookresearch/deit, |
|
paper `DeiT: Data-efficient Image Transformers` - https://arxiv.org/abs/2012.12877 |
|
|
|
Hacked together by / Copyright 2020 Ross Wightman |
|
""" |
|
from functools import partial |
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
|
|
from timm.models.layers import DropPath, to_2tuple, trunc_normal_ |
|
from timm.models.registry import register_model |
|
from pytorch_lightning.utilities.rank_zero import rank_zero_info |
|
|
|
|
|
class Mlp(nn.Module): |
|
def __init__( |
|
self, |
|
in_features, |
|
hidden_features=None, |
|
out_features=None, |
|
act_layer=nn.GELU, |
|
drop=0.0, |
|
): |
|
super().__init__() |
|
out_features = out_features or in_features |
|
hidden_features = hidden_features or in_features |
|
self.fc1 = nn.Linear(in_features, hidden_features) |
|
self.act = act_layer() |
|
self.fc2 = nn.Linear(hidden_features, out_features) |
|
self.drop = nn.Dropout(drop) |
|
|
|
def forward(self, x): |
|
x = self.fc1(x) |
|
x = self.act(x) |
|
x = self.drop(x) |
|
x = self.fc2(x) |
|
x = self.drop(x) |
|
return x |
|
|
|
|
|
class Attention(nn.Module): |
|
def __init__( |
|
self, |
|
dim, |
|
num_heads=8, |
|
qkv_bias=False, |
|
qk_scale=None, |
|
attn_drop=0.0, |
|
proj_drop=0.0, |
|
): |
|
super().__init__() |
|
self.num_heads = num_heads |
|
head_dim = dim // num_heads |
|
|
|
self.scale = qk_scale or head_dim**-0.5 |
|
|
|
self.qkv = nn.Linear(dim, dim * 3, bias=False) |
|
if qkv_bias: |
|
self.q_bias = nn.Parameter(torch.zeros(dim)) |
|
self.v_bias = nn.Parameter(torch.zeros(dim)) |
|
else: |
|
self.q_bias = None |
|
self.v_bias = None |
|
|
|
self.attn_drop = nn.Dropout(attn_drop) |
|
self.proj = nn.Linear(dim, dim) |
|
self.proj_drop = nn.Dropout(proj_drop) |
|
|
|
def forward(self, x, mask=None, relative_position_bias=None): |
|
B, N, C = x.shape |
|
|
|
qkv_bias = None |
|
if self.q_bias is not None: |
|
qkv_bias = torch.cat((self.q_bias, torch.zeros_like(self.v_bias, requires_grad=False), self.v_bias)) |
|
qkv = F.linear(input=x, weight=self.qkv.weight, bias=qkv_bias) |
|
qkv = qkv.reshape(B, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4) |
|
|
|
q, k, v = ( |
|
qkv[0], |
|
qkv[1], |
|
qkv[2], |
|
) |
|
|
|
q = q * self.scale |
|
attn = q.float() @ k.float().transpose(-2, -1) |
|
|
|
if relative_position_bias is not None: |
|
attn = attn + relative_position_bias.unsqueeze(0) |
|
|
|
if mask is not None: |
|
mask = mask.bool() |
|
attn = attn.masked_fill(~mask[:, None, None, :], float("-inf")) |
|
attn = attn.softmax(dim=-1).type_as(x) |
|
attn = self.attn_drop(attn) |
|
|
|
x = (attn @ v).transpose(1, 2).reshape(B, N, C) |
|
x = self.proj(x) |
|
x = self.proj_drop(x) |
|
return x |
|
|
|
|
|
class Block(nn.Module): |
|
def __init__( |
|
self, |
|
dim, |
|
num_heads, |
|
mlp_ratio=4.0, |
|
qkv_bias=False, |
|
qk_scale=None, |
|
drop=0.0, |
|
attn_drop=0.0, |
|
drop_path=0.0, |
|
act_layer=nn.GELU, |
|
norm_layer=nn.LayerNorm, |
|
with_vlffn=False, |
|
layer_scale_init_values=0.1, |
|
max_text_len=40, |
|
): |
|
super().__init__() |
|
self.norm1 = norm_layer(dim) |
|
self.attn = Attention( |
|
dim, |
|
num_heads=num_heads, |
|
qkv_bias=qkv_bias, |
|
qk_scale=qk_scale, |
|
attn_drop=attn_drop, |
|
proj_drop=drop, |
|
) |
|
|
|
self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() |
|
self.norm2_text = norm_layer(dim) |
|
self.norm2_imag = norm_layer(dim) |
|
mlp_hidden_dim = int(dim * mlp_ratio) |
|
self.mlp_text = Mlp( |
|
in_features=dim, |
|
hidden_features=mlp_hidden_dim, |
|
act_layer=act_layer, |
|
drop=drop, |
|
) |
|
self.mlp_imag = Mlp( |
|
in_features=dim, |
|
hidden_features=mlp_hidden_dim, |
|
act_layer=act_layer, |
|
drop=drop, |
|
) |
|
self.mlp_vl = None |
|
if with_vlffn: |
|
self.mlp_vl = Mlp( |
|
in_features=dim, |
|
hidden_features=mlp_hidden_dim, |
|
act_layer=act_layer, |
|
drop=drop, |
|
) |
|
self.norm2_vl = norm_layer(dim) |
|
|
|
self.gamma_1 = ( |
|
nn.Parameter(layer_scale_init_values * torch.ones((dim)), requires_grad=True) |
|
if layer_scale_init_values is not None |
|
else 1.0 |
|
) |
|
self.gamma_2 = ( |
|
nn.Parameter(layer_scale_init_values * torch.ones((dim)), requires_grad=True) |
|
if layer_scale_init_values is not None |
|
else 1.0 |
|
) |
|
|
|
self.max_text_len = max_text_len |
|
|
|
def forward(self, x, mask=None, modality_type=None, relative_position_bias=None): |
|
x = x + self.drop_path( |
|
self.gamma_1 * self.attn(self.norm1(x), mask=mask, relative_position_bias=relative_position_bias) |
|
) |
|
|
|
if modality_type == "image": |
|
x = x + self.drop_path(self.gamma_2 * self.mlp_imag(self.norm2_imag(x))) |
|
elif modality_type == "text": |
|
x = x + self.drop_path(self.gamma_2 * self.mlp_text(self.norm2_text(x))) |
|
else: |
|
if self.mlp_vl is None: |
|
x_text = x[:, : self.max_text_len] |
|
x_imag = x[:, self.max_text_len :] |
|
x_text = x_text + self.drop_path(self.gamma_2 * self.mlp_text(self.norm2_text(x_text))) |
|
x_imag = x_imag + self.drop_path(self.gamma_2 * self.mlp_imag(self.norm2_imag(x_imag))) |
|
x = torch.cat([x_text, x_imag], dim=1) |
|
else: |
|
x = x + self.drop_path(self.gamma_2 * self.mlp_vl(self.norm2_vl(x))) |
|
|
|
return x |
|
|
|
|
|
class PatchEmbed(nn.Module): |
|
"""Image to Patch Embedding""" |
|
|
|
def __init__( |
|
self, |
|
img_size=224, |
|
patch_size=16, |
|
in_chans=3, |
|
embed_dim=768, |
|
no_patch_embed_bias=False, |
|
): |
|
super().__init__() |
|
img_size = to_2tuple(img_size) |
|
patch_size = to_2tuple(patch_size) |
|
num_patches = (img_size[1] // patch_size[1]) * (img_size[0] // patch_size[0]) |
|
self.patch_shape = (img_size[0] // patch_size[0], img_size[1] // patch_size[1]) |
|
self.img_size = img_size |
|
self.patch_size = patch_size |
|
self.num_patches = num_patches |
|
|
|
self.proj = nn.Conv2d( |
|
in_chans, |
|
embed_dim, |
|
kernel_size=patch_size, |
|
stride=patch_size, |
|
bias=False if no_patch_embed_bias else True, |
|
) |
|
|
|
def forward(self, x): |
|
B, C, H, W = x.shape |
|
assert ( |
|
H == self.img_size[0] and W == self.img_size[1] |
|
), f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})." |
|
|
|
x = self.proj(x) |
|
return x |
|
|
|
|
|
class MultiWayTransformer(nn.Module): |
|
"""Vision Transformer |
|
|
|
A PyTorch impl of : `An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale` - |
|
https://arxiv.org/abs/2010.11929 |
|
""" |
|
|
|
def __init__( |
|
self, |
|
img_size=224, |
|
patch_size=16, |
|
in_chans=3, |
|
embed_dim=768, |
|
depth=12, |
|
num_heads=12, |
|
mlp_ratio=4.0, |
|
qkv_bias=True, |
|
qk_scale=None, |
|
drop_rate=0.0, |
|
attn_drop_rate=0.0, |
|
drop_path_rate=0.0, |
|
norm_layer=None, |
|
need_relative_position_embed=True, |
|
use_abs_pos_emb=False, |
|
layer_scale_init_values=0.1, |
|
vlffn_start_layer_index=10, |
|
config=None, |
|
): |
|
""" |
|
Args: |
|
img_size (int, tuple): input image size |
|
patch_size (int, tuple): patch size |
|
in_chans (int): number of input channels |
|
num_classes (int): number of classes for classification head |
|
embed_dim (int): embedding dimension |
|
depth (int): depth of transformer |
|
num_heads (int): number of attention heads |
|
mlp_ratio (int): ratio of mlp hidden dim to embedding dim |
|
qkv_bias (bool): enable bias for qkv if True |
|
qk_scale (float): override default qk scale of head_dim ** -0.5 if set |
|
drop_rate (float): dropout rate |
|
attn_drop_rate (float): attention dropout rate |
|
drop_path_rate (float): stochastic depth rate |
|
norm_layer: (nn.Module): normalization layer |
|
need_relative_position_embed (bool): enable relative position bias on self-attention |
|
use_abs_pos_emb (bool): enable abs pos emb |
|
layer_scale_init_values (float or None): layer scale init values, set None to disable |
|
vlffn_start_layer_index (int): vl-ffn start index |
|
config: (dict): other hyper from pytorch-lighting |
|
""" |
|
super().__init__() |
|
drop_path_rate = drop_path_rate if config is None else config["drop_path_rate"] |
|
rank_zero_info("drop path rate: {}".format(drop_path_rate)) |
|
self.use_abs_pos_emb = use_abs_pos_emb |
|
self.need_relative_position_embed = need_relative_position_embed |
|
|
|
self.num_features = self.embed_dim = embed_dim |
|
norm_layer = norm_layer or partial(nn.LayerNorm, eps=1e-6) |
|
|
|
self.patch_embed = PatchEmbed( |
|
img_size=img_size, |
|
patch_size=patch_size, |
|
in_chans=in_chans, |
|
embed_dim=embed_dim, |
|
) |
|
num_patches = self.patch_embed.num_patches |
|
self.patch_size = patch_size |
|
self.num_heads = num_heads |
|
self.vlffn_start_layer_index = vlffn_start_layer_index |
|
if config["loss_names"]["textmlm"] > 0: |
|
self.vlffn_start_layer_index = depth |
|
rank_zero_info( |
|
"Set vlffn_start_layer_index={} for text-only pretraining".format(self.vlffn_start_layer_index) |
|
) |
|
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) |
|
self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim)) if self.use_abs_pos_emb else None |
|
self.pos_drop = nn.Dropout(p=drop_rate) |
|
|
|
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] |
|
self.blocks = nn.ModuleList( |
|
[ |
|
Block( |
|
dim=embed_dim, |
|
num_heads=num_heads, |
|
mlp_ratio=mlp_ratio, |
|
qkv_bias=qkv_bias, |
|
qk_scale=qk_scale, |
|
drop=drop_rate, |
|
attn_drop=attn_drop_rate, |
|
drop_path=dpr[i], |
|
norm_layer=norm_layer, |
|
with_vlffn=(i >= self.vlffn_start_layer_index), |
|
layer_scale_init_values=layer_scale_init_values, |
|
max_text_len=config["max_text_len"], |
|
) |
|
for i in range(depth) |
|
] |
|
) |
|
self.norm = norm_layer(embed_dim) |
|
|
|
if self.pos_embed is not None: |
|
trunc_normal_(self.pos_embed, std=0.02) |
|
trunc_normal_(self.cls_token, std=0.02) |
|
self.apply(self._init_weights) |
|
|
|
def _init_weights(self, m): |
|
if isinstance(m, nn.Linear): |
|
trunc_normal_(m.weight, std=0.02) |
|
if isinstance(m, nn.Linear) and m.bias is not None: |
|
nn.init.constant_(m.bias, 0) |
|
elif isinstance(m, nn.LayerNorm): |
|
nn.init.constant_(m.bias, 0) |
|
nn.init.constant_(m.weight, 1.0) |
|
|
|
@torch.jit.ignore |
|
def no_weight_decay(self): |
|
return {"pos_embed", "cls_token"} |
|
|
|
def visual_embed(self, _x): |
|
x = self.patch_embed(_x) |
|
x = x.flatten(2).transpose(1, 2) |
|
B, L, _ = x.shape |
|
|
|
cls_tokens = self.cls_token.expand(B, -1, -1) |
|
x = torch.cat((cls_tokens, x), dim=1) |
|
|
|
if self.pos_embed is not None: |
|
x = x + self.pos_embed |
|
x = self.pos_drop(x) |
|
|
|
x_mask = torch.ones(x.shape[0], x.shape[1]) |
|
|
|
return x, x_mask |
|
|
|
|
|
|
|
@register_model |
|
def vlmo_base_patch16(pretrained=False, **kwargs): |
|
img_size = kwargs.pop("img_size", 224) |
|
model = MultiWayTransformer( |
|
img_size=img_size, |
|
patch_size=16, |
|
embed_dim=768, |
|
depth=12, |
|
num_heads=12, |
|
mlp_ratio=4, |
|
qkv_bias=True, |
|
vlffn_start_layer_index=10, |
|
norm_layer=partial(nn.LayerNorm, eps=1e-6), |
|
**kwargs, |
|
) |
|
return model |
|
|