File size: 13,654 Bytes
3440f83
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
""" Vision Transformer (ViT) in PyTorch

A PyTorch implement of Vision Transformers as described in
'An Image Is Worth 16 x 16 Words: Transformers for Image Recognition at Scale' - https://arxiv.org/abs/2010.11929

The official jax code is released and available at https://github.com/google-research/vision_transformer

Acknowledgments:
* The paper authors for releasing code and weights, thanks!
* I fixed my class token impl based on Phil Wang's https://github.com/lucidrains/vit-pytorch ... check it out
for some einops/einsum fun
* Simple transformer style inspired by Andrej Karpathy's https://github.com/karpathy/minGPT
* Bert reference code checks against Huggingface Transformers and Tensorflow Bert

DeiT model defs and weights from https://github.com/facebookresearch/deit,
paper `DeiT: Data-efficient Image Transformers` - https://arxiv.org/abs/2012.12877

Hacked together by / Copyright 2020 Ross Wightman
"""
from functools import partial

import torch
import torch.nn as nn
import torch.nn.functional as F

from timm.models.layers import DropPath, to_2tuple, trunc_normal_
from timm.models.registry import register_model
from pytorch_lightning.utilities.rank_zero import rank_zero_info


class Mlp(nn.Module):
    def __init__(
        self,
        in_features,
        hidden_features=None,
        out_features=None,
        act_layer=nn.GELU,
        drop=0.0,
    ):
        super().__init__()
        out_features = out_features or in_features
        hidden_features = hidden_features or in_features
        self.fc1 = nn.Linear(in_features, hidden_features)
        self.act = act_layer()
        self.fc2 = nn.Linear(hidden_features, out_features)
        self.drop = nn.Dropout(drop)

    def forward(self, x):
        x = self.fc1(x)
        x = self.act(x)
        x = self.drop(x)
        x = self.fc2(x)
        x = self.drop(x)
        return x


class Attention(nn.Module):
    def __init__(
        self,
        dim,
        num_heads=8,
        qkv_bias=False,
        qk_scale=None,
        attn_drop=0.0,
        proj_drop=0.0,
    ):
        super().__init__()
        self.num_heads = num_heads
        head_dim = dim // num_heads
        # NOTE scale factor was wrong in my original version, can set manually to be compat with prev weights
        self.scale = qk_scale or head_dim**-0.5

        self.qkv = nn.Linear(dim, dim * 3, bias=False)
        if qkv_bias:
            self.q_bias = nn.Parameter(torch.zeros(dim))
            self.v_bias = nn.Parameter(torch.zeros(dim))
        else:
            self.q_bias = None
            self.v_bias = None

        self.attn_drop = nn.Dropout(attn_drop)
        self.proj = nn.Linear(dim, dim)
        self.proj_drop = nn.Dropout(proj_drop)

    def forward(self, x, mask=None, relative_position_bias=None):
        B, N, C = x.shape

        qkv_bias = None
        if self.q_bias is not None:
            qkv_bias = torch.cat((self.q_bias, torch.zeros_like(self.v_bias, requires_grad=False), self.v_bias))
        qkv = F.linear(input=x, weight=self.qkv.weight, bias=qkv_bias)
        qkv = qkv.reshape(B, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)

        q, k, v = (
            qkv[0],
            qkv[1],
            qkv[2],
        )  # make torchscript happy (cannot use tensor as tuple)

        q = q * self.scale
        attn = q.float() @ k.float().transpose(-2, -1)

        if relative_position_bias is not None:
            attn = attn + relative_position_bias.unsqueeze(0)

        if mask is not None:
            mask = mask.bool()
            attn = attn.masked_fill(~mask[:, None, None, :], float("-inf"))
        attn = attn.softmax(dim=-1).type_as(x)
        attn = self.attn_drop(attn)

        x = (attn @ v).transpose(1, 2).reshape(B, N, C)
        x = self.proj(x)
        x = self.proj_drop(x)
        return x


class Block(nn.Module):
    def __init__(
        self,
        dim,
        num_heads,
        mlp_ratio=4.0,
        qkv_bias=False,
        qk_scale=None,
        drop=0.0,
        attn_drop=0.0,
        drop_path=0.0,
        act_layer=nn.GELU,
        norm_layer=nn.LayerNorm,
        with_vlffn=False,
        layer_scale_init_values=0.1,
        max_text_len=40,
    ):
        super().__init__()
        self.norm1 = norm_layer(dim)
        self.attn = Attention(
            dim,
            num_heads=num_heads,
            qkv_bias=qkv_bias,
            qk_scale=qk_scale,
            attn_drop=attn_drop,
            proj_drop=drop,
        )
        # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
        self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
        self.norm2_text = norm_layer(dim)
        self.norm2_imag = norm_layer(dim)
        mlp_hidden_dim = int(dim * mlp_ratio)
        self.mlp_text = Mlp(
            in_features=dim,
            hidden_features=mlp_hidden_dim,
            act_layer=act_layer,
            drop=drop,
        )
        self.mlp_imag = Mlp(
            in_features=dim,
            hidden_features=mlp_hidden_dim,
            act_layer=act_layer,
            drop=drop,
        )
        self.mlp_vl = None
        if with_vlffn:
            self.mlp_vl = Mlp(
                in_features=dim,
                hidden_features=mlp_hidden_dim,
                act_layer=act_layer,
                drop=drop,
            )
            self.norm2_vl = norm_layer(dim)

        self.gamma_1 = (
            nn.Parameter(layer_scale_init_values * torch.ones((dim)), requires_grad=True)
            if layer_scale_init_values is not None
            else 1.0
        )
        self.gamma_2 = (
            nn.Parameter(layer_scale_init_values * torch.ones((dim)), requires_grad=True)
            if layer_scale_init_values is not None
            else 1.0
        )

        self.max_text_len = max_text_len

    def forward(self, x, mask=None, modality_type=None, relative_position_bias=None):
        x = x + self.drop_path(
            self.gamma_1 * self.attn(self.norm1(x), mask=mask, relative_position_bias=relative_position_bias)
        )

        if modality_type == "image":
            x = x + self.drop_path(self.gamma_2 * self.mlp_imag(self.norm2_imag(x)))
        elif modality_type == "text":
            x = x + self.drop_path(self.gamma_2 * self.mlp_text(self.norm2_text(x)))
        else:
            if self.mlp_vl is None:
                x_text = x[:, : self.max_text_len]
                x_imag = x[:, self.max_text_len :]
                x_text = x_text + self.drop_path(self.gamma_2 * self.mlp_text(self.norm2_text(x_text)))
                x_imag = x_imag + self.drop_path(self.gamma_2 * self.mlp_imag(self.norm2_imag(x_imag)))
                x = torch.cat([x_text, x_imag], dim=1)
            else:
                x = x + self.drop_path(self.gamma_2 * self.mlp_vl(self.norm2_vl(x)))

        return x


class PatchEmbed(nn.Module):
    """Image to Patch Embedding"""

    def __init__(
        self,
        img_size=224,
        patch_size=16,
        in_chans=3,
        embed_dim=768,
        no_patch_embed_bias=False,
    ):
        super().__init__()
        img_size = to_2tuple(img_size)
        patch_size = to_2tuple(patch_size)
        num_patches = (img_size[1] // patch_size[1]) * (img_size[0] // patch_size[0])
        self.patch_shape = (img_size[0] // patch_size[0], img_size[1] // patch_size[1])
        self.img_size = img_size
        self.patch_size = patch_size
        self.num_patches = num_patches

        self.proj = nn.Conv2d(
            in_chans,
            embed_dim,
            kernel_size=patch_size,
            stride=patch_size,
            bias=False if no_patch_embed_bias else True,
        )

    def forward(self, x):
        B, C, H, W = x.shape
        assert (
            H == self.img_size[0] and W == self.img_size[1]
        ), f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})."
        # FIXME look at relaxing size constraints
        x = self.proj(x)
        return x


class MultiWayTransformer(nn.Module):
    """Vision Transformer

    A PyTorch impl of : `An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale`  -
        https://arxiv.org/abs/2010.11929
    """

    def __init__(
        self,
        img_size=224,
        patch_size=16,
        in_chans=3,
        embed_dim=768,
        depth=12,
        num_heads=12,
        mlp_ratio=4.0,
        qkv_bias=True,
        qk_scale=None,
        drop_rate=0.0,
        attn_drop_rate=0.0,
        drop_path_rate=0.0,
        norm_layer=None,
        need_relative_position_embed=True,
        use_abs_pos_emb=False,
        layer_scale_init_values=0.1,
        vlffn_start_layer_index=10,
        config=None,
    ):
        """
        Args:
            img_size (int, tuple): input image size
            patch_size (int, tuple): patch size
            in_chans (int): number of input channels
            num_classes (int): number of classes for classification head
            embed_dim (int): embedding dimension
            depth (int): depth of transformer
            num_heads (int): number of attention heads
            mlp_ratio (int): ratio of mlp hidden dim to embedding dim
            qkv_bias (bool): enable bias for qkv if True
            qk_scale (float): override default qk scale of head_dim ** -0.5 if set
            drop_rate (float): dropout rate
            attn_drop_rate (float): attention dropout rate
            drop_path_rate (float): stochastic depth rate
            norm_layer: (nn.Module): normalization layer
            need_relative_position_embed (bool): enable relative position bias on self-attention
            use_abs_pos_emb (bool): enable abs pos emb
            layer_scale_init_values (float or None): layer scale init values, set None to disable
            vlffn_start_layer_index (int): vl-ffn start index
            config: (dict): other hyper from pytorch-lighting
        """
        super().__init__()
        drop_path_rate = drop_path_rate if config is None else config["drop_path_rate"]
        rank_zero_info("drop path rate: {}".format(drop_path_rate))
        self.use_abs_pos_emb = use_abs_pos_emb
        self.need_relative_position_embed = need_relative_position_embed

        self.num_features = self.embed_dim = embed_dim  # num_features for consistency with other models
        norm_layer = norm_layer or partial(nn.LayerNorm, eps=1e-6)

        self.patch_embed = PatchEmbed(
            img_size=img_size,
            patch_size=patch_size,
            in_chans=in_chans,
            embed_dim=embed_dim,
        )
        num_patches = self.patch_embed.num_patches
        self.patch_size = patch_size
        self.num_heads = num_heads
        self.vlffn_start_layer_index = vlffn_start_layer_index
        if config["loss_names"]["textmlm"] > 0:
            self.vlffn_start_layer_index = depth
            rank_zero_info(
                "Set vlffn_start_layer_index={} for text-only pretraining".format(self.vlffn_start_layer_index)
            )
        self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
        self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim)) if self.use_abs_pos_emb else None
        self.pos_drop = nn.Dropout(p=drop_rate)

        dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)]  # stochastic depth decay rule
        self.blocks = nn.ModuleList(
            [
                Block(
                    dim=embed_dim,
                    num_heads=num_heads,
                    mlp_ratio=mlp_ratio,
                    qkv_bias=qkv_bias,
                    qk_scale=qk_scale,
                    drop=drop_rate,
                    attn_drop=attn_drop_rate,
                    drop_path=dpr[i],
                    norm_layer=norm_layer,
                    with_vlffn=(i >= self.vlffn_start_layer_index),
                    layer_scale_init_values=layer_scale_init_values,
                    max_text_len=config["max_text_len"],
                )
                for i in range(depth)
            ]
        )
        self.norm = norm_layer(embed_dim)

        if self.pos_embed is not None:
            trunc_normal_(self.pos_embed, std=0.02)
        trunc_normal_(self.cls_token, std=0.02)
        self.apply(self._init_weights)

    def _init_weights(self, m):
        if isinstance(m, nn.Linear):
            trunc_normal_(m.weight, std=0.02)
            if isinstance(m, nn.Linear) and m.bias is not None:
                nn.init.constant_(m.bias, 0)
        elif isinstance(m, nn.LayerNorm):
            nn.init.constant_(m.bias, 0)
            nn.init.constant_(m.weight, 1.0)

    @torch.jit.ignore
    def no_weight_decay(self):
        return {"pos_embed", "cls_token"}

    def visual_embed(self, _x):
        x = self.patch_embed(_x)
        x = x.flatten(2).transpose(1, 2)
        B, L, _ = x.shape

        cls_tokens = self.cls_token.expand(B, -1, -1)
        x = torch.cat((cls_tokens, x), dim=1)

        if self.pos_embed is not None:
            x = x + self.pos_embed
        x = self.pos_drop(x)

        x_mask = torch.ones(x.shape[0], x.shape[1])

        return x, x_mask


# VLMo base/p16
@register_model
def vlmo_base_patch16(pretrained=False, **kwargs):
    img_size = kwargs.pop("img_size", 224)
    model = MultiWayTransformer(
        img_size=img_size,
        patch_size=16,
        embed_dim=768,
        depth=12,
        num_heads=12,
        mlp_ratio=4,
        qkv_bias=True,
        vlffn_start_layer_index=10,
        norm_layer=partial(nn.LayerNorm, eps=1e-6),
        **kwargs,
    )
    return model