wikidyk-scope-clf-deberta-v3-large-temporal_10_clusters
This model is a fine-tuned version of microsoft/deberta-v3-large on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.2558
- Accuracy: 0.9270
- F1: 0.2310
- Precision: 0.2810
- Recall: 0.1961
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- total_train_batch_size: 128
- total_eval_batch_size: 128
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 10.0
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
---|---|---|---|---|---|---|---|
0.0343 | 1.0 | 902 | 0.2095 | 0.9441 | 0.0 | 0.0 | 0.0 |
0.0344 | 2.0 | 1804 | 0.2093 | 0.9441 | 0.0 | 0.0 | 0.0 |
0.0368 | 3.0 | 2706 | 0.2190 | 0.9441 | 0.0 | 0.0 | 0.0 |
0.0396 | 4.0 | 3608 | 0.2225 | 0.9441 | 0.0 | 0.0 | 0.0 |
0.0335 | 5.0 | 4510 | 0.2161 | 0.9441 | 0.0 | 0.0 | 0.0 |
0.0307 | 6.0 | 5412 | 0.2188 | 0.9443 | 0.0105 | 0.75 | 0.0053 |
0.0222 | 7.0 | 6314 | 0.2325 | 0.9422 | 0.0958 | 0.3827 | 0.0548 |
0.0223 | 8.0 | 7216 | 0.2335 | 0.9409 | 0.1601 | 0.3904 | 0.1007 |
0.0173 | 9.0 | 8118 | 0.2529 | 0.9333 | 0.2268 | 0.3225 | 0.1749 |
0.0142 | 10.0 | 9020 | 0.2558 | 0.9270 | 0.2310 | 0.2810 | 0.1961 |
Framework versions
- Transformers 4.51.3
- Pytorch 2.6.0+cu124
- Datasets 3.6.0
- Tokenizers 0.21.1
- Downloads last month
- 18
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for YWZBrandon/wikidyk-scope-clf-deberta-v3-large-temporal_10_clusters
Base model
microsoft/deberta-v3-large