Legal-Embed-intfloat-multilingual-e5-large-instruct
This is a sentence-transformers model finetuned from intfloat/multilingual-e5-large-instruct on the legal-rag-embedding-dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: intfloat/multilingual-e5-large-instruct
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 1024 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
- Language: en
- License: apache-2.0
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("axondendriteplus/Legal-Embed-intfloat-multilingual-e5-large-instruct")
sentences = [
'1996. In section 19 of the Depositories Act, 1996 (hereafter in this chapter referred to as the principal Act in this chapter), the following Explanation shall be inserted, namely:- Explanation. For the removal of doubts, it is hereby declared that power to issue directions under this section shall include and always be deemed to have been included the power to direct any person, who made profit or averted loss by indulging in any transaction or activity in contravention of the provisions of this Act or regulations made thereunder, to disgorge an amount equivalent to the wrongful gain made or loss averted by such contravention.',
'What is the purpose of the Explanation inserted in section 19 of the Depositories Act, 1996?',
'What are the qualifications required for a judge to be appointed to a Special Court under this Act?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
Evaluation
Metrics
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.4444 |
cosine_accuracy@3 |
0.6481 |
cosine_accuracy@5 |
0.7654 |
cosine_accuracy@10 |
0.858 |
cosine_precision@1 |
0.4444 |
cosine_precision@3 |
0.216 |
cosine_precision@5 |
0.1531 |
cosine_precision@10 |
0.0858 |
cosine_recall@1 |
0.4444 |
cosine_recall@3 |
0.6481 |
cosine_recall@5 |
0.7654 |
cosine_recall@10 |
0.858 |
cosine_ndcg@10 |
0.6421 |
cosine_mrr@10 |
0.5739 |
cosine_map@100 |
0.5792 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.4383 |
cosine_accuracy@3 |
0.679 |
cosine_accuracy@5 |
0.7716 |
cosine_accuracy@10 |
0.858 |
cosine_precision@1 |
0.4383 |
cosine_precision@3 |
0.2263 |
cosine_precision@5 |
0.1543 |
cosine_precision@10 |
0.0858 |
cosine_recall@1 |
0.4383 |
cosine_recall@3 |
0.679 |
cosine_recall@5 |
0.7716 |
cosine_recall@10 |
0.858 |
cosine_ndcg@10 |
0.6434 |
cosine_mrr@10 |
0.575 |
cosine_map@100 |
0.5802 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.4259 |
cosine_accuracy@3 |
0.6605 |
cosine_accuracy@5 |
0.7469 |
cosine_accuracy@10 |
0.858 |
cosine_precision@1 |
0.4259 |
cosine_precision@3 |
0.2202 |
cosine_precision@5 |
0.1494 |
cosine_precision@10 |
0.0858 |
cosine_recall@1 |
0.4259 |
cosine_recall@3 |
0.6605 |
cosine_recall@5 |
0.7469 |
cosine_recall@10 |
0.858 |
cosine_ndcg@10 |
0.6347 |
cosine_mrr@10 |
0.5638 |
cosine_map@100 |
0.5685 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.4074 |
cosine_accuracy@3 |
0.6481 |
cosine_accuracy@5 |
0.7469 |
cosine_accuracy@10 |
0.8333 |
cosine_precision@1 |
0.4074 |
cosine_precision@3 |
0.216 |
cosine_precision@5 |
0.1494 |
cosine_precision@10 |
0.0833 |
cosine_recall@1 |
0.4074 |
cosine_recall@3 |
0.6481 |
cosine_recall@5 |
0.7469 |
cosine_recall@10 |
0.8333 |
cosine_ndcg@10 |
0.6197 |
cosine_mrr@10 |
0.5514 |
cosine_map@100 |
0.5573 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.4012 |
cosine_accuracy@3 |
0.6481 |
cosine_accuracy@5 |
0.7284 |
cosine_accuracy@10 |
0.7963 |
cosine_precision@1 |
0.4012 |
cosine_precision@3 |
0.216 |
cosine_precision@5 |
0.1457 |
cosine_precision@10 |
0.0796 |
cosine_recall@1 |
0.4012 |
cosine_recall@3 |
0.6481 |
cosine_recall@5 |
0.7284 |
cosine_recall@10 |
0.7963 |
cosine_ndcg@10 |
0.604 |
cosine_mrr@10 |
0.5417 |
cosine_map@100 |
0.5493 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.3395 |
cosine_accuracy@3 |
0.5802 |
cosine_accuracy@5 |
0.6605 |
cosine_accuracy@10 |
0.7284 |
cosine_precision@1 |
0.3395 |
cosine_precision@3 |
0.1934 |
cosine_precision@5 |
0.1321 |
cosine_precision@10 |
0.0728 |
cosine_recall@1 |
0.3395 |
cosine_recall@3 |
0.5802 |
cosine_recall@5 |
0.6605 |
cosine_recall@10 |
0.7284 |
cosine_ndcg@10 |
0.5359 |
cosine_mrr@10 |
0.4739 |
cosine_map@100 |
0.4832 |
Training Details
Training Dataset
json
- Dataset: json
- Size: 1,456 training samples
- Columns:
positive
and anchor
- Approximate statistics based on the first 1000 samples:
|
positive |
anchor |
type |
string |
string |
details |
- min: 110 tokens
- mean: 480.18 tokens
- max: 512 tokens
|
- min: 13 tokens
- mean: 30.5 tokens
- max: 215 tokens
|
- Samples:
positive |
anchor |
its continued obligations towards the holders of debt securities. We have satisfied ourselves about the ability of the issuer to service the debt securities. PLACE DATE: DEBENTURE TRUSTEE TO THE ISSUE WITH HIS SEAL Page - 65 - of 68 FORMAT OF DUE DILIGENCE CERTIFICATE TO BE GIVEN BY THE DEBENTURE TRUSTEE BEFORE OPENING OF THE ISSUE To, SECURITIES AND EXCHANGE BOARD OF INDIA Dear Sir / Madam, SUB. : ISSUE OF BY (Issuer) We, the Debenture Trustee (s) to the above mentioned forthcoming issue state as follows: (1) We have examined documents pertaining to the said issue and other relevant documents. (2) On the basis of such examination and discussions with the issuer, its Mayor/Deputy Mayor /Directors and other officers, other agencies and independent verification of the various relevant documents,- (a) WE CONFIRM that the issuer has made adequate provisions regarding escrow payment mechanism for repayment of debt obligations, and (b) We have satisfied ourselves about the ability of the iss... |
What specific provisions has the issuer made regarding the repayment of debt obligations? |
sums realised by way of penalties to Consolidated Fund of India 23L. Appeal to Securities Appellate Tribunal 23M. Offences 23N. Composition of certain offences 23-O. Power to grant immunity 24. Contravention by companies 25. Certain offences to be cognizable 26. Cognizance of offences by courts 26A. Establishment of Special Courts 26B. Offences triable by Special Courts 26C. Appeal and revision 26D. Application of Code to proceedings before Special Court 26E. Transitional Provisions MISCELLANEOUS 27. Title to dividends 27A. Right to receive income from collective investment scheme 27B. Right to receive income from mutual fund 28. Act not to apply in certain cases 29. Protection of action taken in good faith 29A. Power to delegate 29B. Powers of Board not to apply to International Financial Services Centre 30. Power to make rules 30A. Special Provisions related to commodity derivatives 30B. Special provisions related to pooled investment vehicle 31. Power of Securities and Exchange Boar... |
What powers does the Securities and Exchange Board of India have to make regulations according to the Securities Contracts (Regulation) Act, 1956? |
the depository or the securities market as a result of the default; and (c) the repetitive nature of the default. ] CHAPTER X PROCEDURE FOR ACTION IN CASE OF DEFAULT Liability for action in case of default 92. Without prejudice to the power of the Board to take action, under the provisions of the Act and the Depositories Act, if a depository or a participant:- (a) contravenes any of the provisions of the Act, the Depositories Act, the bye-laws, agreements and these regulations; (b) fails to furnish any information relating to its activity as a depository or participant as required under these regulations; (c) does not furnish the information called for by the Board under clause (a) of sub-section (1) of section 18 of the Depositories Act or furnishes information which is false or misleading in any material particular; (d) does not co-operate in any inspection or investigation or enquiry conducted by the Board; (e) fails to comply with any direction of the Board issued under section 18 ... |
What actions can the Board take against a depository or participant that fails to comply with the provisions of the Act or the Depositories Act? |
- Loss:
MatryoshkaLoss
with these parameters:{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
1024,
768,
512,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epoch
per_device_train_batch_size
: 32
per_device_eval_batch_size
: 16
gradient_accumulation_steps
: 16
learning_rate
: 2e-05
num_train_epochs
: 4
lr_scheduler_type
: cosine
warmup_ratio
: 0.1
bf16
: True
tf32
: True
load_best_model_at_end
: True
optim
: adamw_torch_fused
batch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: False
do_predict
: False
eval_strategy
: epoch
prediction_loss_only
: True
per_device_train_batch_size
: 32
per_device_eval_batch_size
: 16
per_gpu_train_batch_size
: None
per_gpu_eval_batch_size
: None
gradient_accumulation_steps
: 16
eval_accumulation_steps
: None
torch_empty_cache_steps
: None
learning_rate
: 2e-05
weight_decay
: 0.0
adam_beta1
: 0.9
adam_beta2
: 0.999
adam_epsilon
: 1e-08
max_grad_norm
: 1.0
num_train_epochs
: 4
max_steps
: -1
lr_scheduler_type
: cosine
lr_scheduler_kwargs
: {}
warmup_ratio
: 0.1
warmup_steps
: 0
log_level
: passive
log_level_replica
: warning
log_on_each_node
: True
logging_nan_inf_filter
: True
save_safetensors
: True
save_on_each_node
: False
save_only_model
: False
restore_callback_states_from_checkpoint
: False
no_cuda
: False
use_cpu
: False
use_mps_device
: False
seed
: 42
data_seed
: None
jit_mode_eval
: False
use_ipex
: False
bf16
: True
fp16
: False
fp16_opt_level
: O1
half_precision_backend
: auto
bf16_full_eval
: False
fp16_full_eval
: False
tf32
: True
local_rank
: 0
ddp_backend
: None
tpu_num_cores
: None
tpu_metrics_debug
: False
debug
: []
dataloader_drop_last
: False
dataloader_num_workers
: 0
dataloader_prefetch_factor
: None
past_index
: -1
disable_tqdm
: False
remove_unused_columns
: True
label_names
: None
load_best_model_at_end
: True
ignore_data_skip
: False
fsdp
: []
fsdp_min_num_params
: 0
fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
fsdp_transformer_layer_cls_to_wrap
: None
accelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
deepspeed
: None
label_smoothing_factor
: 0.0
optim
: adamw_torch_fused
optim_args
: None
adafactor
: False
group_by_length
: False
length_column_name
: length
ddp_find_unused_parameters
: None
ddp_bucket_cap_mb
: None
ddp_broadcast_buffers
: False
dataloader_pin_memory
: True
dataloader_persistent_workers
: False
skip_memory_metrics
: True
use_legacy_prediction_loop
: False
push_to_hub
: False
resume_from_checkpoint
: None
hub_model_id
: None
hub_strategy
: every_save
hub_private_repo
: None
hub_always_push
: False
gradient_checkpointing
: False
gradient_checkpointing_kwargs
: None
include_inputs_for_metrics
: False
include_for_metrics
: []
eval_do_concat_batches
: True
fp16_backend
: auto
push_to_hub_model_id
: None
push_to_hub_organization
: None
mp_parameters
:
auto_find_batch_size
: False
full_determinism
: False
torchdynamo
: None
ray_scope
: last
ddp_timeout
: 1800
torch_compile
: False
torch_compile_backend
: None
torch_compile_mode
: None
include_tokens_per_second
: False
include_num_input_tokens_seen
: False
neftune_noise_alpha
: None
optim_target_modules
: None
batch_eval_metrics
: False
eval_on_start
: False
use_liger_kernel
: False
eval_use_gather_object
: False
average_tokens_across_devices
: False
prompts
: None
batch_sampler
: no_duplicates
multi_dataset_batch_sampler
: proportional
Training Logs
Epoch |
Step |
Training Loss |
dim_1024_cosine_ndcg@10 |
dim_768_cosine_ndcg@10 |
dim_512_cosine_ndcg@10 |
dim_256_cosine_ndcg@10 |
dim_128_cosine_ndcg@10 |
dim_64_cosine_ndcg@10 |
1.0 |
3 |
- |
0.6950 |
0.6944 |
0.6945 |
0.6609 |
0.6004 |
0.4757 |
2.0 |
6 |
- |
0.6349 |
0.6287 |
0.6241 |
0.6079 |
0.5904 |
0.5322 |
3.0 |
9 |
- |
0.6446 |
0.6382 |
0.6325 |
0.6192 |
0.5958 |
0.5304 |
3.3478 |
10 |
140.2842 |
- |
- |
- |
- |
- |
- |
4.0 |
12 |
- |
0.6421 |
0.6434 |
0.6347 |
0.6197 |
0.604 |
0.5359 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.11.11
- Sentence Transformers: 4.1.0
- Transformers: 4.52.3
- PyTorch: 2.7.0+cu126
- Accelerate: 1.7.0
- Datasets: 3.6.0
- Tokenizers: 0.21.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}