metadata
library_name: mlx
tags:
- function calling
- on-device language model
- mlx
inference: false
space: false
spaces: false
language:
- en
base_model: squeeze-ai-lab/TinyAgent-1.1B
pipeline_tag: text-generation
model-index:
- name: TinyAgent-1.1B
results: []
WannabeArchitect/TinyAgent-1.1B-MLX
This model WannabeArchitect/TinyAgent-1.1B-MLX was converted to MLX format from squeeze-ai-lab/TinyAgent-1.1B using mlx-lm version 0.22.1.
Use with mlx
pip install mlx-lm
from mlx_lm import load, generate
model, tokenizer = load("WannabeArchitect/TinyAgent-1.1B-MLX")
prompt = "hello"
if tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages, add_generation_prompt=True
)
response = generate(model, tokenizer, prompt=prompt, verbose=True)