Text Generation
Transformers
Safetensors
English
qwen3
esper
esper-3
valiant
valiant-labs
qwen
qwen-3
qwen-3-8b
8b
reasoning
code
code-instruct
python
javascript
dev-ops
jenkins
terraform
scripting
powershell
azure
aws
gcp
cloud
problem-solving
architect
engineer
developer
creative
analytical
expert
rationality
conversational
chat
instruct
text-generation-inference
metadata
language:
- en
library_name: transformers
pipeline_tag: text-generation
tags:
- esper
- esper-3
- valiant
- valiant-labs
- qwen
- qwen-3
- qwen-3-8b
- 8b
- reasoning
- code
- code-instruct
- python
- javascript
- dev-ops
- jenkins
- terraform
- scripting
- powershell
- azure
- aws
- gcp
- cloud
- problem-solving
- architect
- engineer
- developer
- creative
- analytical
- expert
- rationality
- conversational
- chat
- instruct
base_model: Qwen/Qwen3-8B
datasets:
- sequelbox/Titanium2.1-DeepSeek-R1
- sequelbox/Tachibana2-DeepSeek-R1
- sequelbox/Raiden-DeepSeek-R1
license: apache-2.0
Support our open-source dataset and model releases!
Esper 3: Qwen3-4B, Qwen3-8B, Qwen3-14B
Esper 3 is a coding, architecture, and DevOps reasoning specialist built on Qwen 3.
- Finetuned on our DevOps and architecture reasoning and code reasoning data generated with Deepseek R1!
- Improved general and creative reasoning to supplement problem-solving and general chat performance.
- Small model sizes allow running on local desktop and mobile, plus super-fast server inference!
Prompting Guide
Esper 3 uses the Qwen 3 prompt format.
Esper 3 is a reasoning finetune; we recommend enable_thinking=True for all chats.
Example inference script to get started:
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "ValiantLabs/Qwen3-8B-Esper3"
# load the tokenizer and the model
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype="auto",
device_map="auto"
)
# prepare the model input
prompt = "Write a Terraform configuration that uses the `aws_ami` data source to find the latest Amazon Linux 2 AMI. Then, provision an EC2 instance using this dynamically determined AMI ID."
messages = [
{"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True,
enable_thinking=True # Switches between thinking and non-thinking modes. Default is True.
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
# conduct text completion
generated_ids = model.generate(
**model_inputs,
max_new_tokens=32768
)
output_ids = generated_ids[0][len(model_inputs.input_ids[0]):].tolist()
# parsing thinking content
try:
# rindex finding 151668 (</think>)
index = len(output_ids) - output_ids[::-1].index(151668)
except ValueError:
index = 0
thinking_content = tokenizer.decode(output_ids[:index], skip_special_tokens=True).strip("\n")
content = tokenizer.decode(output_ids[index:], skip_special_tokens=True).strip("\n")
print("thinking content:", thinking_content)
print("content:", content)
Esper 3 is created by Valiant Labs.
Check out our HuggingFace page to see all of our models!
We care about open source. For everyone to use.