|
|
|
|
|
from datasets import load_dataset |
|
from transformers import DistilBertTokenizerFast, DistilBertForSequenceClassification, Trainer, TrainingArguments |
|
import torch |
|
|
|
|
|
dataset = load_dataset("imdb", split='train[:2%]').train_test_split(test_size=0.2) |
|
|
|
|
|
tokenizer = DistilBertTokenizerFast.from_pretrained("distilbert-base-uncased") |
|
model = DistilBertForSequenceClassification.from_pretrained("distilbert-base-uncased", num_labels=2) |
|
|
|
|
|
def tokenize(batch): |
|
return tokenizer(batch['text'], padding=True, truncation=True) |
|
|
|
tokenized_dataset = dataset.map(tokenize, batched=True) |
|
tokenized_dataset = tokenized_dataset.rename_column("label", "labels") |
|
|
|
|
|
training_args = TrainingArguments( |
|
output_dir="./results", |
|
evaluation_strategy="epoch", |
|
per_device_train_batch_size=4, |
|
per_device_eval_batch_size=4, |
|
num_train_epochs=1, |
|
logging_steps=10, |
|
save_steps=10, |
|
report_to="none" |
|
) |
|
|
|
|
|
trainer = Trainer( |
|
model=model, |
|
args=training_args, |
|
train_dataset=tokenized_dataset["train"], |
|
eval_dataset=tokenized_dataset["test"] |
|
) |
|
|
|
|
|
trainer.train() |
|
|
|
|
|
trainer.save_model("my-simple-sentiment-model") |
|
|