#made by gpt from datasets import load_dataset from transformers import DistilBertTokenizerFast, DistilBertForSequenceClassification, Trainer, TrainingArguments import torch # Load a small dataset (IMDB with just a few samples for quick testing) dataset = load_dataset("imdb", split='train[:2%]').train_test_split(test_size=0.2) # Tokenizer and model tokenizer = DistilBertTokenizerFast.from_pretrained("distilbert-base-uncased") model = DistilBertForSequenceClassification.from_pretrained("distilbert-base-uncased", num_labels=2) # Tokenize the dataset def tokenize(batch): return tokenizer(batch['text'], padding=True, truncation=True) tokenized_dataset = dataset.map(tokenize, batched=True) tokenized_dataset = tokenized_dataset.rename_column("label", "labels") # Training arguments training_args = TrainingArguments( output_dir="./results", evaluation_strategy="epoch", per_device_train_batch_size=4, per_device_eval_batch_size=4, num_train_epochs=1, logging_steps=10, save_steps=10, report_to="none" ) # Trainer trainer = Trainer( model=model, args=training_args, train_dataset=tokenized_dataset["train"], eval_dataset=tokenized_dataset["test"] ) # Train the model trainer.train() # Save model trainer.save_model("my-simple-sentiment-model")