Triangle104/DeepSeek-R1-0528-Qwen3-8B-Esper3-Q6_K-GGUF
This model was converted to GGUF format from ValiantLabs/DeepSeek-R1-0528-Qwen3-8B-Esper3
using llama.cpp via the ggml.ai's GGUF-my-repo space.
Refer to the original model card for more details on the model.
Esper 3 is a coding, architecture, and DevOps reasoning specialist built on Qwen 3.
- Finetuned on our DevOps and architecture reasoning and code reasoning data generated with Deepseek R1!
- Improved general and creative reasoning to supplement problem-solving and general chat performance.
- Small model sizes allow running on local desktop and mobile, plus super-fast server inference!
Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)
brew install llama.cpp
Invoke the llama.cpp server or the CLI.
CLI:
llama-cli --hf-repo Triangle104/DeepSeek-R1-0528-Qwen3-8B-Esper3-Q6_K-GGUF --hf-file deepseek-r1-0528-qwen3-8b-esper3-q6_k.gguf -p "The meaning to life and the universe is"
Server:
llama-server --hf-repo Triangle104/DeepSeek-R1-0528-Qwen3-8B-Esper3-Q6_K-GGUF --hf-file deepseek-r1-0528-qwen3-8b-esper3-q6_k.gguf -c 2048
Note: You can also use this checkpoint directly through the usage steps listed in the Llama.cpp repo as well.
Step 1: Clone llama.cpp from GitHub.
git clone https://github.com/ggerganov/llama.cpp
Step 2: Move into the llama.cpp folder and build it with LLAMA_CURL=1
flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
cd llama.cpp && LLAMA_CURL=1 make
Step 3: Run inference through the main binary.
./llama-cli --hf-repo Triangle104/DeepSeek-R1-0528-Qwen3-8B-Esper3-Q6_K-GGUF --hf-file deepseek-r1-0528-qwen3-8b-esper3-q6_k.gguf -p "The meaning to life and the universe is"
or
./llama-server --hf-repo Triangle104/DeepSeek-R1-0528-Qwen3-8B-Esper3-Q6_K-GGUF --hf-file deepseek-r1-0528-qwen3-8b-esper3-q6_k.gguf -c 2048
- Downloads last month
- 9
6-bit
Model tree for Triangle104/DeepSeek-R1-0528-Qwen3-8B-Esper3-Q6_K-GGUF
Base model
deepseek-ai/DeepSeek-R1-0528-Qwen3-8B