tags: | |
- deep-reinforcement-learning | |
- reinforcement-learning | |
- stable-baselines3 | |
# ThomasSimonini/ppo-SpaceInvadersNoFrameskip-v4 | |
This is a pre-trained model of a PPO agent playing SpaceInvadersNoFrameskip using the [stable-baselines3](https://github.com/DLR-RM/stable-baselines3) library. It is taken from [RL-trained-agents](https://github.com/DLR-RM/rl-trained-agents) | |
### Usage (with Stable-baselines3) | |
Using this model becomes easy when you have stable-baselines3 and huggingface_sb3 installed: | |
``` | |
pip install stable-baselines3 | |
pip install huggingface_sb3 | |
``` | |
Then, you can use the model like this: | |
```python | |
import gym | |
from huggingface_sb3 import load_from_hub | |
from stable_baselines3 import PPO | |
from stable_baselines3.common.evaluation import evaluate_policy | |
from stable_baselines3.common.env_util import make_atari_env | |
from stable_baselines3.common.vec_env import VecFrameStack | |
# Retrieve the model from the hub | |
## repo_id = id of the model repository from the Hugging Face Hub (repo_id = {organization}/{repo_name}) | |
## filename = name of the model zip file from the repository | |
checkpoint = load_from_hub(repo_id="ThomasSimonini/ppo-SpaceInvadersNoFrameskip-v4", filename="ppo-SpaceInvadersNoFrameskip-v4.zip") | |
model = PPO.load(checkpoint) | |
``` | |
### Evaluation Results | |
Mean_reward: 627.160 (162 eval episodes) | |