Shr3ezy's picture
Uploading all files
29858c0 verified
raw
history blame contribute delete
750 Bytes
from torch.nn.modules.loss import _Loss
from torch.autograd import Variable
import torch
import time
import numpy as np
import torch.nn as nn
import random
import copy
import math
CEloss = nn.CrossEntropyLoss()
def loss_calculation(semantic, target):
bs = semantic.size()[0]
pix_num = 480 * 640
target = target.view(bs, -1).view(-1).contiguous()
semantic = semantic.view(bs, 22, pix_num).transpose(1, 2).contiguous().view(bs * pix_num, 22).contiguous()
semantic_loss = CEloss(semantic, target)
return semantic_loss
class Loss(_Loss):
def __init__(self):
super(Loss, self).__init__(True)
def forward(self, semantic, target):
return loss_calculation(semantic, target)