from torch.nn.modules.loss import _Loss from torch.autograd import Variable import torch import time import numpy as np import torch.nn as nn import random import copy import math CEloss = nn.CrossEntropyLoss() def loss_calculation(semantic, target): bs = semantic.size()[0] pix_num = 480 * 640 target = target.view(bs, -1).view(-1).contiguous() semantic = semantic.view(bs, 22, pix_num).transpose(1, 2).contiguous().view(bs * pix_num, 22).contiguous() semantic_loss = CEloss(semantic, target) return semantic_loss class Loss(_Loss): def __init__(self): super(Loss, self).__init__(True) def forward(self, semantic, target): return loss_calculation(semantic, target)