DenseFusion-ObjectPose / lib /extractors.py
Shr3ezy's picture
Uploading all files
29858c0 verified
from collections import OrderedDict
import math
import random
import torch
import torch.nn as nn
import torch.nn.functional as F
def load_weights_sequential(target, source_state):
new_dict = OrderedDict()
for (k1, v1), (k2, v2) in zip(target.state_dict().items(), source_state.items()):
new_dict[k1] = v2
target.load_state_dict(new_dict)
def conv3x3(in_planes, out_planes, stride=1, dilation=1):
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
padding=dilation, dilation=dilation, bias=False)
class BasicBlock(nn.Module):
expansion = 1
def __init__(self, inplanes, planes, stride=1, downsample=None, dilation=1):
super(BasicBlock, self).__init__()
self.conv1 = conv3x3(inplanes, planes, stride=stride, dilation=dilation)
self.relu = nn.ReLU(inplace=True)
self.conv2 = conv3x3(planes, planes, stride=1, dilation=dilation)
self.downsample = downsample
self.stride = stride
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.relu(out)
out = self.conv2(out)
if self.downsample is not None:
residual = self.downsample(x)
out += residual
out = self.relu(out)
return out
class Bottleneck(nn.Module):
expansion = 4
def __init__(self, inplanes, planes, stride=1, downsample=None, dilation=1):
super(Bottleneck, self).__init__()
self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False)
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, dilation=dilation,
padding=dilation, bias=False)
self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False)
self.relu = nn.ReLU(inplace=True)
self.downsample = downsample
self.stride = stride
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.relu(out)
out = self.conv2(out)
out = self.relu(out)
out = self.conv3(out)
if self.downsample is not None:
residual = self.downsample(x)
out += residual
out = self.relu(out)
return out
class ResNet(nn.Module):
def __init__(self, block, layers=(3, 4, 23, 3)):
self.inplanes = 64
super(ResNet, self).__init__()
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3,
bias=False)
self.relu = nn.ReLU(inplace=True)
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.layer1 = self._make_layer(block, 64, layers[0])
self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
self.layer3 = self._make_layer(block, 256, layers[2], stride=1, dilation=2)
self.layer4 = self._make_layer(block, 512, layers[3], stride=1, dilation=4)
for m in self.modules():
if isinstance(m, nn.Conv2d):
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
m.weight.data.normal_(0, math.sqrt(2. / n))
elif isinstance(m, nn.BatchNorm2d):
m.weight.data.fill_(1)
m.bias.data.zero_()
def _make_layer(self, block, planes, blocks, stride=1, dilation=1):
downsample = None
if stride != 1 or self.inplanes != planes * block.expansion:
downsample = nn.Sequential(
nn.Conv2d(self.inplanes, planes * block.expansion,
kernel_size=1, stride=stride, bias=False)
)
layers = [block(self.inplanes, planes, stride, downsample)]
self.inplanes = planes * block.expansion
for i in range(1, blocks):
layers.append(block(self.inplanes, planes, dilation=dilation))
return nn.Sequential(*layers)
def forward(self, x):
x = self.conv1(x)
x = self.relu(x)
x = self.maxpool(x)
x = self.layer1(x)
x = self.layer2(x)
x_3 = self.layer3(x)
x = self.layer4(x_3)
return x, x_3
def resnet18(pretrained=False):
model = ResNet(BasicBlock, [2, 2, 2, 2])
return model
def resnet34(pretrained=False):
model = ResNet(BasicBlock, [3, 4, 6, 3])
return model
def resnet50(pretrained=False):
model = ResNet(Bottleneck, [3, 4, 6, 3])
return model
def resnet101(pretrained=False):
model = ResNet(Bottleneck, [3, 4, 23, 3])
return model
def resnet152(pretrained=False):
model = ResNet(Bottleneck, [3, 8, 36, 3])
return model