|
from collections import OrderedDict
|
|
import math
|
|
import random
|
|
import torch
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
|
|
def load_weights_sequential(target, source_state):
|
|
new_dict = OrderedDict()
|
|
for (k1, v1), (k2, v2) in zip(target.state_dict().items(), source_state.items()):
|
|
new_dict[k1] = v2
|
|
target.load_state_dict(new_dict)
|
|
|
|
def conv3x3(in_planes, out_planes, stride=1, dilation=1):
|
|
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
|
|
padding=dilation, dilation=dilation, bias=False)
|
|
|
|
class BasicBlock(nn.Module):
|
|
expansion = 1
|
|
|
|
def __init__(self, inplanes, planes, stride=1, downsample=None, dilation=1):
|
|
super(BasicBlock, self).__init__()
|
|
self.conv1 = conv3x3(inplanes, planes, stride=stride, dilation=dilation)
|
|
self.relu = nn.ReLU(inplace=True)
|
|
self.conv2 = conv3x3(planes, planes, stride=1, dilation=dilation)
|
|
self.downsample = downsample
|
|
self.stride = stride
|
|
|
|
def forward(self, x):
|
|
residual = x
|
|
|
|
out = self.conv1(x)
|
|
out = self.relu(out)
|
|
|
|
out = self.conv2(out)
|
|
|
|
if self.downsample is not None:
|
|
residual = self.downsample(x)
|
|
|
|
out += residual
|
|
out = self.relu(out)
|
|
|
|
return out
|
|
|
|
|
|
class Bottleneck(nn.Module):
|
|
expansion = 4
|
|
def __init__(self, inplanes, planes, stride=1, downsample=None, dilation=1):
|
|
super(Bottleneck, self).__init__()
|
|
self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False)
|
|
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, dilation=dilation,
|
|
padding=dilation, bias=False)
|
|
self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False)
|
|
self.relu = nn.ReLU(inplace=True)
|
|
self.downsample = downsample
|
|
self.stride = stride
|
|
|
|
def forward(self, x):
|
|
residual = x
|
|
|
|
out = self.conv1(x)
|
|
out = self.relu(out)
|
|
|
|
out = self.conv2(out)
|
|
out = self.relu(out)
|
|
|
|
out = self.conv3(out)
|
|
|
|
if self.downsample is not None:
|
|
residual = self.downsample(x)
|
|
|
|
out += residual
|
|
out = self.relu(out)
|
|
|
|
return out
|
|
|
|
|
|
class ResNet(nn.Module):
|
|
def __init__(self, block, layers=(3, 4, 23, 3)):
|
|
self.inplanes = 64
|
|
super(ResNet, self).__init__()
|
|
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3,
|
|
bias=False)
|
|
self.relu = nn.ReLU(inplace=True)
|
|
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
|
|
self.layer1 = self._make_layer(block, 64, layers[0])
|
|
self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
|
|
self.layer3 = self._make_layer(block, 256, layers[2], stride=1, dilation=2)
|
|
self.layer4 = self._make_layer(block, 512, layers[3], stride=1, dilation=4)
|
|
|
|
for m in self.modules():
|
|
if isinstance(m, nn.Conv2d):
|
|
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
|
|
m.weight.data.normal_(0, math.sqrt(2. / n))
|
|
elif isinstance(m, nn.BatchNorm2d):
|
|
m.weight.data.fill_(1)
|
|
m.bias.data.zero_()
|
|
|
|
def _make_layer(self, block, planes, blocks, stride=1, dilation=1):
|
|
downsample = None
|
|
if stride != 1 or self.inplanes != planes * block.expansion:
|
|
downsample = nn.Sequential(
|
|
nn.Conv2d(self.inplanes, planes * block.expansion,
|
|
kernel_size=1, stride=stride, bias=False)
|
|
)
|
|
|
|
layers = [block(self.inplanes, planes, stride, downsample)]
|
|
self.inplanes = planes * block.expansion
|
|
for i in range(1, blocks):
|
|
layers.append(block(self.inplanes, planes, dilation=dilation))
|
|
|
|
return nn.Sequential(*layers)
|
|
|
|
def forward(self, x):
|
|
x = self.conv1(x)
|
|
x = self.relu(x)
|
|
x = self.maxpool(x)
|
|
|
|
x = self.layer1(x)
|
|
x = self.layer2(x)
|
|
x_3 = self.layer3(x)
|
|
x = self.layer4(x_3)
|
|
|
|
return x, x_3
|
|
|
|
|
|
def resnet18(pretrained=False):
|
|
model = ResNet(BasicBlock, [2, 2, 2, 2])
|
|
return model
|
|
|
|
def resnet34(pretrained=False):
|
|
model = ResNet(BasicBlock, [3, 4, 6, 3])
|
|
return model
|
|
|
|
def resnet50(pretrained=False):
|
|
model = ResNet(Bottleneck, [3, 4, 6, 3])
|
|
return model
|
|
|
|
def resnet101(pretrained=False):
|
|
model = ResNet(Bottleneck, [3, 4, 23, 3])
|
|
return model
|
|
|
|
def resnet152(pretrained=False):
|
|
model = ResNet(Bottleneck, [3, 8, 36, 3])
|
|
return model |