from collections import OrderedDict import math import random import torch import torch.nn as nn import torch.nn.functional as F def load_weights_sequential(target, source_state): new_dict = OrderedDict() for (k1, v1), (k2, v2) in zip(target.state_dict().items(), source_state.items()): new_dict[k1] = v2 target.load_state_dict(new_dict) def conv3x3(in_planes, out_planes, stride=1, dilation=1): return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=dilation, dilation=dilation, bias=False) class BasicBlock(nn.Module): expansion = 1 def __init__(self, inplanes, planes, stride=1, downsample=None, dilation=1): super(BasicBlock, self).__init__() self.conv1 = conv3x3(inplanes, planes, stride=stride, dilation=dilation) self.relu = nn.ReLU(inplace=True) self.conv2 = conv3x3(planes, planes, stride=1, dilation=dilation) self.downsample = downsample self.stride = stride def forward(self, x): residual = x out = self.conv1(x) out = self.relu(out) out = self.conv2(out) if self.downsample is not None: residual = self.downsample(x) out += residual out = self.relu(out) return out class Bottleneck(nn.Module): expansion = 4 def __init__(self, inplanes, planes, stride=1, downsample=None, dilation=1): super(Bottleneck, self).__init__() self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False) self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, dilation=dilation, padding=dilation, bias=False) self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False) self.relu = nn.ReLU(inplace=True) self.downsample = downsample self.stride = stride def forward(self, x): residual = x out = self.conv1(x) out = self.relu(out) out = self.conv2(out) out = self.relu(out) out = self.conv3(out) if self.downsample is not None: residual = self.downsample(x) out += residual out = self.relu(out) return out class ResNet(nn.Module): def __init__(self, block, layers=(3, 4, 23, 3)): self.inplanes = 64 super(ResNet, self).__init__() self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False) self.relu = nn.ReLU(inplace=True) self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self.layer1 = self._make_layer(block, 64, layers[0]) self.layer2 = self._make_layer(block, 128, layers[1], stride=2) self.layer3 = self._make_layer(block, 256, layers[2], stride=1, dilation=2) self.layer4 = self._make_layer(block, 512, layers[3], stride=1, dilation=4) for m in self.modules(): if isinstance(m, nn.Conv2d): n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels m.weight.data.normal_(0, math.sqrt(2. / n)) elif isinstance(m, nn.BatchNorm2d): m.weight.data.fill_(1) m.bias.data.zero_() def _make_layer(self, block, planes, blocks, stride=1, dilation=1): downsample = None if stride != 1 or self.inplanes != planes * block.expansion: downsample = nn.Sequential( nn.Conv2d(self.inplanes, planes * block.expansion, kernel_size=1, stride=stride, bias=False) ) layers = [block(self.inplanes, planes, stride, downsample)] self.inplanes = planes * block.expansion for i in range(1, blocks): layers.append(block(self.inplanes, planes, dilation=dilation)) return nn.Sequential(*layers) def forward(self, x): x = self.conv1(x) x = self.relu(x) x = self.maxpool(x) x = self.layer1(x) x = self.layer2(x) x_3 = self.layer3(x) x = self.layer4(x_3) return x, x_3 def resnet18(pretrained=False): model = ResNet(BasicBlock, [2, 2, 2, 2]) return model def resnet34(pretrained=False): model = ResNet(BasicBlock, [3, 4, 6, 3]) return model def resnet50(pretrained=False): model = ResNet(Bottleneck, [3, 4, 6, 3]) return model def resnet101(pretrained=False): model = ResNet(Bottleneck, [3, 4, 23, 3]) return model def resnet152(pretrained=False): model = ResNet(Bottleneck, [3, 8, 36, 3]) return model