Shr3ezy's picture
Uploading all files
29858c0 verified
import torch.utils.data as data
from PIL import Image
import os
import os.path
import errno
import torch
import json
import codecs
import numpy as np
import sys
import torchvision.transforms as transforms
import argparse
import json
import time
import random
import numpy.ma as ma
import copy
import scipy.misc
import scipy.io as scio
import yaml
import cv2
class PoseDataset(data.Dataset):
def __init__(self, mode, num, add_noise, root, noise_trans, refine):
self.objlist = [1, 2, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15]
self.mode = mode
self.list_rgb = []
self.list_depth = []
self.list_label = []
self.list_obj = []
self.list_rank = []
self.meta = {}
self.pt = {}
self.root = root
self.noise_trans = noise_trans
self.refine = refine
item_count = 0
for item in self.objlist:
if self.mode == 'train':
input_file = open('{0}/data/{1}/train.txt'.format(self.root, '%02d' % item))
else:
input_file = open('{0}/data/{1}/test.txt'.format(self.root, '%02d' % item))
while 1:
item_count += 1
input_line = input_file.readline()
if self.mode == 'test' and item_count % 10 != 0:
continue
if not input_line:
break
if input_line[-1:] == '\n':
input_line = input_line[:-1]
self.list_rgb.append('{0}/data/{1}/rgb/{2}.png'.format(self.root, '%02d' % item, input_line))
self.list_depth.append('{0}/data/{1}/depth/{2}.png'.format(self.root, '%02d' % item, input_line))
if self.mode == 'eval':
self.list_label.append('{0}/segnet_results/{1}_label/{2}_label.png'.format(self.root, '%02d' % item, input_line))
else:
self.list_label.append('{0}/data/{1}/mask/{2}.png'.format(self.root, '%02d' % item, input_line))
self.list_obj.append(item)
self.list_rank.append(int(input_line))
meta_file = open('{0}/data/{1}/gt.yml'.format(self.root, '%02d' % item), 'r')
self.meta[item] = yaml.load(meta_file)
self.pt[item] = ply_vtx('{0}/models/obj_{1}.ply'.format(self.root, '%02d' % item))
print("Object {0} buffer loaded".format(item))
self.length = len(self.list_rgb)
self.cam_cx = 325.26110
self.cam_cy = 242.04899
self.cam_fx = 572.41140
self.cam_fy = 573.57043
self.xmap = np.array([[j for i in range(640)] for j in range(480)])
self.ymap = np.array([[i for i in range(640)] for j in range(480)])
self.num = num
self.add_noise = add_noise
self.trancolor = transforms.ColorJitter(0.2, 0.2, 0.2, 0.05)
self.norm = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
self.border_list = [-1, 40, 80, 120, 160, 200, 240, 280, 320, 360, 400, 440, 480, 520, 560, 600, 640, 680]
self.num_pt_mesh_large = 500
self.num_pt_mesh_small = 500
self.symmetry_obj_idx = [7, 8]
def __getitem__(self, index):
img = Image.open(self.list_rgb[index])
ori_img = np.array(img)
depth = np.array(Image.open(self.list_depth[index]))
label = np.array(Image.open(self.list_label[index]))
obj = self.list_obj[index]
rank = self.list_rank[index]
if obj == 2:
for i in range(0, len(self.meta[obj][rank])):
if self.meta[obj][rank][i]['obj_id'] == 2:
meta = self.meta[obj][rank][i]
break
else:
meta = self.meta[obj][rank][0]
mask_depth = ma.getmaskarray(ma.masked_not_equal(depth, 0))
if self.mode == 'eval':
mask_label = ma.getmaskarray(ma.masked_equal(label, np.array(255)))
else:
mask_label = ma.getmaskarray(ma.masked_equal(label, np.array([255, 255, 255])))[:, :, 0]
mask = mask_label * mask_depth
if self.add_noise:
img = self.trancolor(img)
img = np.array(img)[:, :, :3]
img = np.transpose(img, (2, 0, 1))
img_masked = img
if self.mode == 'eval':
rmin, rmax, cmin, cmax = get_bbox(mask_to_bbox(mask_label))
else:
rmin, rmax, cmin, cmax = get_bbox(meta['obj_bb'])
img_masked = img_masked[:, rmin:rmax, cmin:cmax]
#p_img = np.transpose(img_masked, (1, 2, 0))
#scipy.misc.imsave('evaluation_result/{0}_input.png'.format(index), p_img)
target_r = np.resize(np.array(meta['cam_R_m2c']), (3, 3))
target_t = np.array(meta['cam_t_m2c'])
add_t = np.array([random.uniform(-self.noise_trans, self.noise_trans) for i in range(3)])
choose = mask[rmin:rmax, cmin:cmax].flatten().nonzero()[0]
if len(choose) == 0:
cc = torch.LongTensor([0])
return(cc, cc, cc, cc, cc, cc)
if len(choose) > self.num:
c_mask = np.zeros(len(choose), dtype=int)
c_mask[:self.num] = 1
np.random.shuffle(c_mask)
choose = choose[c_mask.nonzero()]
else:
choose = np.pad(choose, (0, self.num - len(choose)), 'wrap')
depth_masked = depth[rmin:rmax, cmin:cmax].flatten()[choose][:, np.newaxis].astype(np.float32)
xmap_masked = self.xmap[rmin:rmax, cmin:cmax].flatten()[choose][:, np.newaxis].astype(np.float32)
ymap_masked = self.ymap[rmin:rmax, cmin:cmax].flatten()[choose][:, np.newaxis].astype(np.float32)
choose = np.array([choose])
cam_scale = 1.0
pt2 = depth_masked / cam_scale
pt0 = (ymap_masked - self.cam_cx) * pt2 / self.cam_fx
pt1 = (xmap_masked - self.cam_cy) * pt2 / self.cam_fy
cloud = np.concatenate((pt0, pt1, pt2), axis=1)
cloud = cloud / 1000.0
if self.add_noise:
cloud = np.add(cloud, add_t)
#fw = open('evaluation_result/{0}_cld.xyz'.format(index), 'w')
#for it in cloud:
# fw.write('{0} {1} {2}\n'.format(it[0], it[1], it[2]))
#fw.close()
model_points = self.pt[obj] / 1000.0
dellist = [j for j in range(0, len(model_points))]
dellist = random.sample(dellist, len(model_points) - self.num_pt_mesh_small)
model_points = np.delete(model_points, dellist, axis=0)
#fw = open('evaluation_result/{0}_model_points.xyz'.format(index), 'w')
#for it in model_points:
# fw.write('{0} {1} {2}\n'.format(it[0], it[1], it[2]))
#fw.close()
target = np.dot(model_points, target_r.T)
if self.add_noise:
target = np.add(target, target_t / 1000.0 + add_t)
out_t = target_t / 1000.0 + add_t
else:
target = np.add(target, target_t / 1000.0)
out_t = target_t / 1000.0
#fw = open('evaluation_result/{0}_tar.xyz'.format(index), 'w')
#for it in target:
# fw.write('{0} {1} {2}\n'.format(it[0], it[1], it[2]))
#fw.close()
return torch.from_numpy(cloud.astype(np.float32)), \
torch.LongTensor(choose.astype(np.int32)), \
self.norm(torch.from_numpy(img_masked.astype(np.float32))), \
torch.from_numpy(target.astype(np.float32)), \
torch.from_numpy(model_points.astype(np.float32)), \
torch.LongTensor([self.objlist.index(obj)])
def __len__(self):
return self.length
def get_sym_list(self):
return self.symmetry_obj_idx
def get_num_points_mesh(self):
if self.refine:
return self.num_pt_mesh_large
else:
return self.num_pt_mesh_small
border_list = [-1, 40, 80, 120, 160, 200, 240, 280, 320, 360, 400, 440, 480, 520, 560, 600, 640, 680]
img_width = 480
img_length = 640
def mask_to_bbox(mask):
mask = mask.astype(np.uint8)
contours, _ = cv2.findContours(mask, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
x = 0
y = 0
w = 0
h = 0
for contour in contours:
tmp_x, tmp_y, tmp_w, tmp_h = cv2.boundingRect(contour)
if tmp_w * tmp_h > w * h:
x = tmp_x
y = tmp_y
w = tmp_w
h = tmp_h
return [x, y, w, h]
def get_bbox(bbox):
bbx = [bbox[1], bbox[1] + bbox[3], bbox[0], bbox[0] + bbox[2]]
if bbx[0] < 0:
bbx[0] = 0
if bbx[1] >= 480:
bbx[1] = 479
if bbx[2] < 0:
bbx[2] = 0
if bbx[3] >= 640:
bbx[3] = 639
rmin, rmax, cmin, cmax = bbx[0], bbx[1], bbx[2], bbx[3]
r_b = rmax - rmin
for tt in range(len(border_list)):
if r_b > border_list[tt] and r_b < border_list[tt + 1]:
r_b = border_list[tt + 1]
break
c_b = cmax - cmin
for tt in range(len(border_list)):
if c_b > border_list[tt] and c_b < border_list[tt + 1]:
c_b = border_list[tt + 1]
break
center = [int((rmin + rmax) / 2), int((cmin + cmax) / 2)]
rmin = center[0] - int(r_b / 2)
rmax = center[0] + int(r_b / 2)
cmin = center[1] - int(c_b / 2)
cmax = center[1] + int(c_b / 2)
if rmin < 0:
delt = -rmin
rmin = 0
rmax += delt
if cmin < 0:
delt = -cmin
cmin = 0
cmax += delt
if rmax > 480:
delt = rmax - 480
rmax = 480
rmin -= delt
if cmax > 640:
delt = cmax - 640
cmax = 640
cmin -= delt
return rmin, rmax, cmin, cmax
def ply_vtx(path):
f = open(path)
assert f.readline().strip() == "ply"
f.readline()
f.readline()
N = int(f.readline().split()[-1])
while f.readline().strip() != "end_header":
continue
pts = []
for _ in range(N):
pts.append(np.float32(f.readline().split()[:3]))
return np.array(pts)