File size: 10,323 Bytes
29858c0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
import torch.utils.data as data
from PIL import Image
import os
import os.path
import errno
import torch
import json
import codecs
import numpy as np
import sys
import torchvision.transforms as transforms
import argparse
import json
import time
import random
import numpy.ma as ma
import copy
import scipy.misc
import scipy.io as scio
import yaml
import cv2


class PoseDataset(data.Dataset):
    def __init__(self, mode, num, add_noise, root, noise_trans, refine):
        self.objlist = [1, 2, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15]
        self.mode = mode

        self.list_rgb = []
        self.list_depth = []
        self.list_label = []
        self.list_obj = []
        self.list_rank = []
        self.meta = {}
        self.pt = {}
        self.root = root
        self.noise_trans = noise_trans
        self.refine = refine

        item_count = 0
        for item in self.objlist:
            if self.mode == 'train':
                input_file = open('{0}/data/{1}/train.txt'.format(self.root, '%02d' % item))
            else:
                input_file = open('{0}/data/{1}/test.txt'.format(self.root, '%02d' % item))
            while 1:
                item_count += 1
                input_line = input_file.readline()
                if self.mode == 'test' and item_count % 10 != 0:
                    continue
                if not input_line:
                    break
                if input_line[-1:] == '\n':
                    input_line = input_line[:-1]
                self.list_rgb.append('{0}/data/{1}/rgb/{2}.png'.format(self.root, '%02d' % item, input_line))
                self.list_depth.append('{0}/data/{1}/depth/{2}.png'.format(self.root, '%02d' % item, input_line))
                if self.mode == 'eval':
                    self.list_label.append('{0}/segnet_results/{1}_label/{2}_label.png'.format(self.root, '%02d' % item, input_line))
                else:
                    self.list_label.append('{0}/data/{1}/mask/{2}.png'.format(self.root, '%02d' % item, input_line))
                
                self.list_obj.append(item)
                self.list_rank.append(int(input_line))

            meta_file = open('{0}/data/{1}/gt.yml'.format(self.root, '%02d' % item), 'r')
            self.meta[item] = yaml.load(meta_file)
            self.pt[item] = ply_vtx('{0}/models/obj_{1}.ply'.format(self.root, '%02d' % item))
            
            print("Object {0} buffer loaded".format(item))

        self.length = len(self.list_rgb)

        self.cam_cx = 325.26110
        self.cam_cy = 242.04899
        self.cam_fx = 572.41140
        self.cam_fy = 573.57043

        self.xmap = np.array([[j for i in range(640)] for j in range(480)])
        self.ymap = np.array([[i for i in range(640)] for j in range(480)])
        
        self.num = num
        self.add_noise = add_noise
        self.trancolor = transforms.ColorJitter(0.2, 0.2, 0.2, 0.05)
        self.norm = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
        self.border_list = [-1, 40, 80, 120, 160, 200, 240, 280, 320, 360, 400, 440, 480, 520, 560, 600, 640, 680]
        self.num_pt_mesh_large = 500
        self.num_pt_mesh_small = 500
        self.symmetry_obj_idx = [7, 8]

    def __getitem__(self, index):
        img = Image.open(self.list_rgb[index])
        ori_img = np.array(img)
        depth = np.array(Image.open(self.list_depth[index]))
        label = np.array(Image.open(self.list_label[index]))
        obj = self.list_obj[index]
        rank = self.list_rank[index]        

        if obj == 2:
            for i in range(0, len(self.meta[obj][rank])):
                if self.meta[obj][rank][i]['obj_id'] == 2:
                    meta = self.meta[obj][rank][i]
                    break
        else:
            meta = self.meta[obj][rank][0]

        mask_depth = ma.getmaskarray(ma.masked_not_equal(depth, 0))
        if self.mode == 'eval':
            mask_label = ma.getmaskarray(ma.masked_equal(label, np.array(255)))
        else:
            mask_label = ma.getmaskarray(ma.masked_equal(label, np.array([255, 255, 255])))[:, :, 0]
        
        mask = mask_label * mask_depth

        if self.add_noise:
            img = self.trancolor(img)

        img = np.array(img)[:, :, :3]
        img = np.transpose(img, (2, 0, 1))
        img_masked = img

        if self.mode == 'eval':
            rmin, rmax, cmin, cmax = get_bbox(mask_to_bbox(mask_label))
        else:
            rmin, rmax, cmin, cmax = get_bbox(meta['obj_bb'])

        img_masked = img_masked[:, rmin:rmax, cmin:cmax]
        #p_img = np.transpose(img_masked, (1, 2, 0))
        #scipy.misc.imsave('evaluation_result/{0}_input.png'.format(index), p_img)

        target_r = np.resize(np.array(meta['cam_R_m2c']), (3, 3))
        target_t = np.array(meta['cam_t_m2c'])
        add_t = np.array([random.uniform(-self.noise_trans, self.noise_trans) for i in range(3)])

        choose = mask[rmin:rmax, cmin:cmax].flatten().nonzero()[0]
        if len(choose) == 0:
            cc = torch.LongTensor([0])
            return(cc, cc, cc, cc, cc, cc)

        if len(choose) > self.num:
            c_mask = np.zeros(len(choose), dtype=int)
            c_mask[:self.num] = 1
            np.random.shuffle(c_mask)
            choose = choose[c_mask.nonzero()]
        else:
            choose = np.pad(choose, (0, self.num - len(choose)), 'wrap')
        
        depth_masked = depth[rmin:rmax, cmin:cmax].flatten()[choose][:, np.newaxis].astype(np.float32)
        xmap_masked = self.xmap[rmin:rmax, cmin:cmax].flatten()[choose][:, np.newaxis].astype(np.float32)
        ymap_masked = self.ymap[rmin:rmax, cmin:cmax].flatten()[choose][:, np.newaxis].astype(np.float32)
        choose = np.array([choose])

        cam_scale = 1.0
        pt2 = depth_masked / cam_scale
        pt0 = (ymap_masked - self.cam_cx) * pt2 / self.cam_fx
        pt1 = (xmap_masked - self.cam_cy) * pt2 / self.cam_fy
        cloud = np.concatenate((pt0, pt1, pt2), axis=1)
        cloud = cloud / 1000.0

        if self.add_noise:
            cloud = np.add(cloud, add_t)

        #fw = open('evaluation_result/{0}_cld.xyz'.format(index), 'w')
        #for it in cloud:
        #    fw.write('{0} {1} {2}\n'.format(it[0], it[1], it[2]))
        #fw.close()

        model_points = self.pt[obj] / 1000.0
        dellist = [j for j in range(0, len(model_points))]
        dellist = random.sample(dellist, len(model_points) - self.num_pt_mesh_small)
        model_points = np.delete(model_points, dellist, axis=0)

        #fw = open('evaluation_result/{0}_model_points.xyz'.format(index), 'w')
        #for it in model_points:
        #    fw.write('{0} {1} {2}\n'.format(it[0], it[1], it[2]))
        #fw.close()

        target = np.dot(model_points, target_r.T)
        if self.add_noise:
            target = np.add(target, target_t / 1000.0 + add_t)
            out_t = target_t / 1000.0 + add_t
        else:
            target = np.add(target, target_t / 1000.0)
            out_t = target_t / 1000.0

        #fw = open('evaluation_result/{0}_tar.xyz'.format(index), 'w')
        #for it in target:
        #    fw.write('{0} {1} {2}\n'.format(it[0], it[1], it[2]))
        #fw.close()

        return torch.from_numpy(cloud.astype(np.float32)), \
               torch.LongTensor(choose.astype(np.int32)), \
               self.norm(torch.from_numpy(img_masked.astype(np.float32))), \
               torch.from_numpy(target.astype(np.float32)), \
               torch.from_numpy(model_points.astype(np.float32)), \
               torch.LongTensor([self.objlist.index(obj)])

    def __len__(self):
        return self.length

    def get_sym_list(self):
        return self.symmetry_obj_idx

    def get_num_points_mesh(self):
        if self.refine:
            return self.num_pt_mesh_large
        else:
            return self.num_pt_mesh_small



border_list = [-1, 40, 80, 120, 160, 200, 240, 280, 320, 360, 400, 440, 480, 520, 560, 600, 640, 680]
img_width = 480
img_length = 640


def mask_to_bbox(mask):
    mask = mask.astype(np.uint8)
    contours, _ = cv2.findContours(mask, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)


    x = 0
    y = 0
    w = 0
    h = 0
    for contour in contours:
        tmp_x, tmp_y, tmp_w, tmp_h = cv2.boundingRect(contour)
        if tmp_w * tmp_h > w * h:
            x = tmp_x
            y = tmp_y
            w = tmp_w
            h = tmp_h
    return [x, y, w, h]


def get_bbox(bbox):
    bbx = [bbox[1], bbox[1] + bbox[3], bbox[0], bbox[0] + bbox[2]]
    if bbx[0] < 0:
        bbx[0] = 0
    if bbx[1] >= 480:
        bbx[1] = 479
    if bbx[2] < 0:
        bbx[2] = 0
    if bbx[3] >= 640:
        bbx[3] = 639                
    rmin, rmax, cmin, cmax = bbx[0], bbx[1], bbx[2], bbx[3]
    r_b = rmax - rmin
    for tt in range(len(border_list)):
        if r_b > border_list[tt] and r_b < border_list[tt + 1]:
            r_b = border_list[tt + 1]
            break
    c_b = cmax - cmin
    for tt in range(len(border_list)):
        if c_b > border_list[tt] and c_b < border_list[tt + 1]:
            c_b = border_list[tt + 1]
            break
    center = [int((rmin + rmax) / 2), int((cmin + cmax) / 2)]
    rmin = center[0] - int(r_b / 2)
    rmax = center[0] + int(r_b / 2)
    cmin = center[1] - int(c_b / 2)
    cmax = center[1] + int(c_b / 2)
    if rmin < 0:
        delt = -rmin
        rmin = 0
        rmax += delt
    if cmin < 0:
        delt = -cmin
        cmin = 0
        cmax += delt
    if rmax > 480:
        delt = rmax - 480
        rmax = 480
        rmin -= delt
    if cmax > 640:
        delt = cmax - 640
        cmax = 640
        cmin -= delt
    return rmin, rmax, cmin, cmax


def ply_vtx(path):
    f = open(path)
    assert f.readline().strip() == "ply"
    f.readline()
    f.readline()
    N = int(f.readline().split()[-1])
    while f.readline().strip() != "end_header":
        continue
    pts = []
    for _ in range(N):
        pts.append(np.float32(f.readline().split()[:3]))
    return np.array(pts)