File size: 10,323 Bytes
29858c0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 |
import torch.utils.data as data
from PIL import Image
import os
import os.path
import errno
import torch
import json
import codecs
import numpy as np
import sys
import torchvision.transforms as transforms
import argparse
import json
import time
import random
import numpy.ma as ma
import copy
import scipy.misc
import scipy.io as scio
import yaml
import cv2
class PoseDataset(data.Dataset):
def __init__(self, mode, num, add_noise, root, noise_trans, refine):
self.objlist = [1, 2, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15]
self.mode = mode
self.list_rgb = []
self.list_depth = []
self.list_label = []
self.list_obj = []
self.list_rank = []
self.meta = {}
self.pt = {}
self.root = root
self.noise_trans = noise_trans
self.refine = refine
item_count = 0
for item in self.objlist:
if self.mode == 'train':
input_file = open('{0}/data/{1}/train.txt'.format(self.root, '%02d' % item))
else:
input_file = open('{0}/data/{1}/test.txt'.format(self.root, '%02d' % item))
while 1:
item_count += 1
input_line = input_file.readline()
if self.mode == 'test' and item_count % 10 != 0:
continue
if not input_line:
break
if input_line[-1:] == '\n':
input_line = input_line[:-1]
self.list_rgb.append('{0}/data/{1}/rgb/{2}.png'.format(self.root, '%02d' % item, input_line))
self.list_depth.append('{0}/data/{1}/depth/{2}.png'.format(self.root, '%02d' % item, input_line))
if self.mode == 'eval':
self.list_label.append('{0}/segnet_results/{1}_label/{2}_label.png'.format(self.root, '%02d' % item, input_line))
else:
self.list_label.append('{0}/data/{1}/mask/{2}.png'.format(self.root, '%02d' % item, input_line))
self.list_obj.append(item)
self.list_rank.append(int(input_line))
meta_file = open('{0}/data/{1}/gt.yml'.format(self.root, '%02d' % item), 'r')
self.meta[item] = yaml.load(meta_file)
self.pt[item] = ply_vtx('{0}/models/obj_{1}.ply'.format(self.root, '%02d' % item))
print("Object {0} buffer loaded".format(item))
self.length = len(self.list_rgb)
self.cam_cx = 325.26110
self.cam_cy = 242.04899
self.cam_fx = 572.41140
self.cam_fy = 573.57043
self.xmap = np.array([[j for i in range(640)] for j in range(480)])
self.ymap = np.array([[i for i in range(640)] for j in range(480)])
self.num = num
self.add_noise = add_noise
self.trancolor = transforms.ColorJitter(0.2, 0.2, 0.2, 0.05)
self.norm = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
self.border_list = [-1, 40, 80, 120, 160, 200, 240, 280, 320, 360, 400, 440, 480, 520, 560, 600, 640, 680]
self.num_pt_mesh_large = 500
self.num_pt_mesh_small = 500
self.symmetry_obj_idx = [7, 8]
def __getitem__(self, index):
img = Image.open(self.list_rgb[index])
ori_img = np.array(img)
depth = np.array(Image.open(self.list_depth[index]))
label = np.array(Image.open(self.list_label[index]))
obj = self.list_obj[index]
rank = self.list_rank[index]
if obj == 2:
for i in range(0, len(self.meta[obj][rank])):
if self.meta[obj][rank][i]['obj_id'] == 2:
meta = self.meta[obj][rank][i]
break
else:
meta = self.meta[obj][rank][0]
mask_depth = ma.getmaskarray(ma.masked_not_equal(depth, 0))
if self.mode == 'eval':
mask_label = ma.getmaskarray(ma.masked_equal(label, np.array(255)))
else:
mask_label = ma.getmaskarray(ma.masked_equal(label, np.array([255, 255, 255])))[:, :, 0]
mask = mask_label * mask_depth
if self.add_noise:
img = self.trancolor(img)
img = np.array(img)[:, :, :3]
img = np.transpose(img, (2, 0, 1))
img_masked = img
if self.mode == 'eval':
rmin, rmax, cmin, cmax = get_bbox(mask_to_bbox(mask_label))
else:
rmin, rmax, cmin, cmax = get_bbox(meta['obj_bb'])
img_masked = img_masked[:, rmin:rmax, cmin:cmax]
#p_img = np.transpose(img_masked, (1, 2, 0))
#scipy.misc.imsave('evaluation_result/{0}_input.png'.format(index), p_img)
target_r = np.resize(np.array(meta['cam_R_m2c']), (3, 3))
target_t = np.array(meta['cam_t_m2c'])
add_t = np.array([random.uniform(-self.noise_trans, self.noise_trans) for i in range(3)])
choose = mask[rmin:rmax, cmin:cmax].flatten().nonzero()[0]
if len(choose) == 0:
cc = torch.LongTensor([0])
return(cc, cc, cc, cc, cc, cc)
if len(choose) > self.num:
c_mask = np.zeros(len(choose), dtype=int)
c_mask[:self.num] = 1
np.random.shuffle(c_mask)
choose = choose[c_mask.nonzero()]
else:
choose = np.pad(choose, (0, self.num - len(choose)), 'wrap')
depth_masked = depth[rmin:rmax, cmin:cmax].flatten()[choose][:, np.newaxis].astype(np.float32)
xmap_masked = self.xmap[rmin:rmax, cmin:cmax].flatten()[choose][:, np.newaxis].astype(np.float32)
ymap_masked = self.ymap[rmin:rmax, cmin:cmax].flatten()[choose][:, np.newaxis].astype(np.float32)
choose = np.array([choose])
cam_scale = 1.0
pt2 = depth_masked / cam_scale
pt0 = (ymap_masked - self.cam_cx) * pt2 / self.cam_fx
pt1 = (xmap_masked - self.cam_cy) * pt2 / self.cam_fy
cloud = np.concatenate((pt0, pt1, pt2), axis=1)
cloud = cloud / 1000.0
if self.add_noise:
cloud = np.add(cloud, add_t)
#fw = open('evaluation_result/{0}_cld.xyz'.format(index), 'w')
#for it in cloud:
# fw.write('{0} {1} {2}\n'.format(it[0], it[1], it[2]))
#fw.close()
model_points = self.pt[obj] / 1000.0
dellist = [j for j in range(0, len(model_points))]
dellist = random.sample(dellist, len(model_points) - self.num_pt_mesh_small)
model_points = np.delete(model_points, dellist, axis=0)
#fw = open('evaluation_result/{0}_model_points.xyz'.format(index), 'w')
#for it in model_points:
# fw.write('{0} {1} {2}\n'.format(it[0], it[1], it[2]))
#fw.close()
target = np.dot(model_points, target_r.T)
if self.add_noise:
target = np.add(target, target_t / 1000.0 + add_t)
out_t = target_t / 1000.0 + add_t
else:
target = np.add(target, target_t / 1000.0)
out_t = target_t / 1000.0
#fw = open('evaluation_result/{0}_tar.xyz'.format(index), 'w')
#for it in target:
# fw.write('{0} {1} {2}\n'.format(it[0], it[1], it[2]))
#fw.close()
return torch.from_numpy(cloud.astype(np.float32)), \
torch.LongTensor(choose.astype(np.int32)), \
self.norm(torch.from_numpy(img_masked.astype(np.float32))), \
torch.from_numpy(target.astype(np.float32)), \
torch.from_numpy(model_points.astype(np.float32)), \
torch.LongTensor([self.objlist.index(obj)])
def __len__(self):
return self.length
def get_sym_list(self):
return self.symmetry_obj_idx
def get_num_points_mesh(self):
if self.refine:
return self.num_pt_mesh_large
else:
return self.num_pt_mesh_small
border_list = [-1, 40, 80, 120, 160, 200, 240, 280, 320, 360, 400, 440, 480, 520, 560, 600, 640, 680]
img_width = 480
img_length = 640
def mask_to_bbox(mask):
mask = mask.astype(np.uint8)
contours, _ = cv2.findContours(mask, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
x = 0
y = 0
w = 0
h = 0
for contour in contours:
tmp_x, tmp_y, tmp_w, tmp_h = cv2.boundingRect(contour)
if tmp_w * tmp_h > w * h:
x = tmp_x
y = tmp_y
w = tmp_w
h = tmp_h
return [x, y, w, h]
def get_bbox(bbox):
bbx = [bbox[1], bbox[1] + bbox[3], bbox[0], bbox[0] + bbox[2]]
if bbx[0] < 0:
bbx[0] = 0
if bbx[1] >= 480:
bbx[1] = 479
if bbx[2] < 0:
bbx[2] = 0
if bbx[3] >= 640:
bbx[3] = 639
rmin, rmax, cmin, cmax = bbx[0], bbx[1], bbx[2], bbx[3]
r_b = rmax - rmin
for tt in range(len(border_list)):
if r_b > border_list[tt] and r_b < border_list[tt + 1]:
r_b = border_list[tt + 1]
break
c_b = cmax - cmin
for tt in range(len(border_list)):
if c_b > border_list[tt] and c_b < border_list[tt + 1]:
c_b = border_list[tt + 1]
break
center = [int((rmin + rmax) / 2), int((cmin + cmax) / 2)]
rmin = center[0] - int(r_b / 2)
rmax = center[0] + int(r_b / 2)
cmin = center[1] - int(c_b / 2)
cmax = center[1] + int(c_b / 2)
if rmin < 0:
delt = -rmin
rmin = 0
rmax += delt
if cmin < 0:
delt = -cmin
cmin = 0
cmax += delt
if rmax > 480:
delt = rmax - 480
rmax = 480
rmin -= delt
if cmax > 640:
delt = cmax - 640
cmax = 640
cmin -= delt
return rmin, rmax, cmin, cmax
def ply_vtx(path):
f = open(path)
assert f.readline().strip() == "ply"
f.readline()
f.readline()
N = int(f.readline().split()[-1])
while f.readline().strip() != "end_header":
continue
pts = []
for _ in range(N):
pts.append(np.float32(f.readline().split()[:3]))
return np.array(pts)
|