SamuelPfisterer1's picture
End of training
7b8a22f verified
metadata
library_name: transformers
license: mit
base_model: openai/whisper-large-v3-turbo
tags:
  - generated_from_trainer
datasets:
  - fleurs
metrics:
  - wer
model-index:
  - name: whisper-large-v3-turbo-serbian-serbia
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: fleurs
          type: fleurs
          config: sr_rs
          split: None
          args: sr_rs
        metrics:
          - name: Wer
            type: wer
            value: 18.343921455385505

whisper-large-v3-turbo-serbian-serbia

This model is a fine-tuned version of openai/whisper-large-v3-turbo on the fleurs dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5289
  • Model Preparation Time: 0.0069
  • Wer Ortho: 34.0354
  • Wer: 18.3439

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 128
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.06
  • num_epochs: 1
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Model Preparation Time Wer Ortho Wer
0.1827 0.0263 32 0.8340 0.0069 36.3524 21.6142
0.1531 0.0527 64 0.6341 0.0069 36.4759 21.7225
0.1551 0.0790 96 0.6893 0.0069 36.0038 21.6647
0.1495 0.1054 128 0.5745 0.0069 35.4518 21.2388
0.1388 0.1317 160 0.5572 0.0069 35.5680 20.5241
0.1359 0.1581 192 0.6313 0.0069 36.2217 20.6974
0.138 0.1844 224 0.5451 0.0069 35.9384 20.4014
0.1332 0.2108 256 0.6109 0.0069 35.5171 20.2209
0.131 0.2371 288 0.5748 0.0069 35.7859 20.6324
0.1316 0.2635 320 0.5705 0.0069 34.9942 20.1559
0.1296 0.2898 352 0.6122 0.0069 35.3791 20.0332
0.1274 0.3162 384 0.5848 0.0069 35.1322 19.8960
0.1185 0.3425 416 0.5458 0.0069 35.4227 19.8239
0.1207 0.3689 448 0.5714 0.0069 34.8053 19.6289
0.1193 0.3952 480 0.6553 0.0069 34.7327 19.3546
0.119 0.4216 512 0.5913 0.0069 35.0523 19.4629
0.122 0.4479 544 0.5890 0.0069 34.8489 19.4846
0.1203 0.4743 576 0.5554 0.0069 35.0886 19.5206
0.1164 0.5006 608 0.5637 0.0069 34.7690 19.4124
0.1173 0.5270 640 0.5492 0.0069 34.6601 19.2319
0.1175 0.5533 672 0.5847 0.0069 34.4785 19.3474
0.1154 0.5797 704 0.5900 0.0069 34.7618 18.8926
0.1136 0.6060 736 0.6104 0.0069 34.6092 19.0586
0.1142 0.6324 768 0.5393 0.0069 34.2533 18.8276
0.1156 0.6587 800 0.5473 0.0069 34.5221 18.8926
0.1125 0.6851 832 0.5747 0.0069 34.4858 18.8276
0.1107 0.7114 864 0.5470 0.0069 34.1880 18.8709
0.1088 0.7378 896 0.5620 0.0069 34.4785 18.8926
0.1111 0.7641 928 0.5832 0.0069 34.4059 18.8493
0.1081 0.7904 960 0.5430 0.0069 34.3623 18.8204
0.108 0.8168 992 0.5560 0.0069 34.4567 18.7626
0.106 0.8431 1024 0.5344 0.0069 34.3550 18.8637
0.1051 0.8695 1056 0.5496 0.0069 34.4567 18.5894
0.1096 0.8958 1088 0.5341 0.0069 34.1008 18.4811
0.1098 0.9222 1120 0.5339 0.0069 34.2025 18.4306
0.1045 0.9485 1152 0.5289 0.0069 34.0354 18.3439
0.1072 0.9749 1184 0.5265 0.0069 34.0863 18.4089

Framework versions

  • Transformers 4.51.3
  • Pytorch 2.5.1
  • Datasets 3.6.0
  • Tokenizers 0.21.1