nm-research's picture
Update README.md
82debe9 verified
metadata
tags:
  - vllm
  - vision
  - fp8
license: apache-2.0
license_link: >-
  https://huggingface.co/datasets/choosealicense/licenses/blob/main/markdown/apache-2.0.md
language:
  - en
base_model: google/gemma-3-4b-it
library_name: transformers

gemma-3-4b-it-FP8-Dynamic

Model Overview

  • Model Architecture: gemma-3-4b-it
    • Input: Vision-Text
    • Output: Text
  • Model Optimizations:
    • Weight quantization: FP8
    • Activation quantization: FP8
  • Release Date: 2/24/2025
  • Version: 1.0
  • Model Developers: Neural Magic

Quantized version of google/gemma-3-4b-it.

Model Optimizations

This model was obtained by quantizing the weights of google/gemma-3-4b-it to FP8 data type, ready for inference with vLLM >= 0.5.2.

Deployment

Use with vLLM

This model can be deployed efficiently using the vLLM backend, as shown in the example below.

from vllm import LLM, SamplingParams
from vllm.assets.image import ImageAsset
from transformers import AutoProcessor

# Define model name once
model_name = "RedHatAI/gemma-3-4b-it-FP8-dynamic"

# Load image and processor
image = ImageAsset("cherry_blossom").pil_image.convert("RGB")
processor = AutoProcessor.from_pretrained(model_name, trust_remote_code=True)

# Build multimodal prompt
chat = [
    {"role": "user", "content": [{"type": "image"}, {"type": "text", "text": "What is the content of this image?"}]},
    {"role": "assistant", "content": []}
]
prompt = processor.apply_chat_template(chat, add_generation_prompt=True)

# Initialize model
llm = LLM(model=model_name, trust_remote_code=True)

# Run inference
inputs = {"prompt": prompt, "multi_modal_data": {"image": [image]}}
outputs = llm.generate(inputs, SamplingParams(temperature=0.2, max_tokens=64))

# Display result
print("RESPONSE:", outputs[0].outputs[0].text)

vLLM also supports OpenAI-compatible serving. See the documentation for more details.

Creation

This model was created with llm-compressor by running the code snippet below as part a multimodal announcement blog.

Model Creation Code
import requests
import torch
from PIL import Image
from transformers import AutoProcessor, Gemma3ForConditionalGeneration
from llmcompressor.transformers import oneshot
from llmcompressor.modifiers.quantization import QuantizationModifier

# Load model.
model_id = google/gemma-3-4b-it
model = Gemma3ForConditionalGeneration.from_pretrained(
    model_id, device_map="auto", torch_dtype="auto"
)
processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True)

# Recipe
recipe = [
    QuantizationModifier(
        targets="Linear",
        scheme="FP8_DYNAMIC",
        sequential_targets=["Gemma3DecoderLayer"],
        ignore=["re:.*lm_head", "re:vision_tower.*", "re:multi_modal_projector.*"],
    ),
]

SAVE_DIR=f"{model_id.split('/')[1]}-FP8-Dynamic"

# Perform oneshot
oneshot(
    model=model,
    recipe=recipe,
    trust_remote_code_model=True,
    output_dir=SAVE_DIR
)

Evaluation

The model was evaluated using lm_evaluation_harness for OpenLLM v1 text benchmark. The evaluations were conducted using the following commands:

Evaluation Commands

OpenLLM v1

lm_eval \
  --model vllm \
  --model_args pretrained="<model_name>",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=<n>,gpu_memory_utilization=0.8,enable_chunked_prefill=True,trust_remote_code=True,enforce_eager=True \
  --tasks openllm \
  --batch_size auto

Accuracy

Category Metric google/gemma-3-4b-it RedHatAI/gemma-3-4b-it-FP8-Dynamic Recovery (%)
OpenLLM V1 ARC Challenge 56.57% 57.08% 100.90%
GSM8K 76.12% 75.51% 99.20%
Hellaswag 74.96% 74.92% 99.95%
MMLU 58.38% 57.98% 99.32%
Truthfulqa (mc2) 51.87% 51.62% 99.52%
Winogrande 70.32% 71.03% 101.01%%%%
Average Score 64.70% 64.69% 99.98%
Vision Evals MMMU (val) 39.89%/td> 38.33% 96.09%
ChartQA 50.76% 51.60% 101.65%
Average Score 45.33% 44.97% 98.87%