Mistral-Small-3.1-24B-Instruct-2503-FP8-dynamic

Model Overview
- Model Architecture: Mistral3ForConditionalGeneration
- Input: Text / Image
- Output: Text
- Model Optimizations:
- Activation quantization: FP8
- Weight quantization: FP8
- Intended Use Cases: It is ideal for:
- Fast-response conversational agents.
- Low-latency function calling.
- Subject matter experts via fine-tuning.
- Local inference for hobbyists and organizations handling sensitive data.
- Programming and math reasoning.
- Long document understanding.
- Visual understanding.
- Out-of-scope: Use in any manner that violates applicable laws or regulations (including trade compliance laws). Use in languages not officially supported by the model.
- Release Date: 04/15/2025
- Version: 1.0
- Model Developers: RedHat (Neural Magic)
Model Optimizations
This model was obtained by quantizing activations and weights of Mistral-Small-3.1-24B-Instruct-2503 to FP8 data type. This optimization reduces the number of bits used to represent weights and activations from 16 to 8, reducing GPU memory requirements (by approximately 50%) and increasing matrix-multiply compute throughput (by approximately 2x). Weight quantization also reduces disk size requirements by approximately 50%.
Only weights and activations of the linear operators within transformers blocks are quantized. Weights are quantized with a symmetric static per-channel scheme, whereas activations are quantized with a symmetric dynamic per-token scheme. The llm-compressor library is used for quantization.
Deployment
This model can be deployed efficiently using the vLLM backend, as shown in the example below.
from vllm import LLM, SamplingParams
from transformers import AutoProcessor
model_id = "RedHatAI/Mistral-Small-3.1-24B-Instruct-2503-FP8-dynamic"
number_gpus = 4
sampling_params = SamplingParams(temperature=0.7, top_p=0.8, max_tokens=256)
processor = AutoProcessor.from_pretrained(model_id)
messages = [{"role": "user", "content": "Give me a short introduction to large language model."}]
prompts = processor.apply_chat_template(messages, add_generation_prompt=True, tokenize=False)
llm = LLM(model=model_id, tensor_parallel_size=number_gpus)
outputs = llm.generate(prompts, sampling_params)
generated_text = outputs[0].outputs[0].text
print(generated_text)
vLLM aslo supports OpenAI-compatible serving. See the documentation for more details.
Deploy on Red Hat AI Inference Server
podman run --rm -it --device nvidia.com/gpu=all -p 8000:8000 \
--ipc=host \
--env "HUGGING_FACE_HUB_TOKEN=$HF_TOKEN" \
--env "HF_HUB_OFFLINE=0" -v ~/.cache/vllm:/home/vllm/.cache \
--name=vllm \
registry.access.redhat.com/rhaiis/rh-vllm-cuda \
vllm serve \
--tensor-parallel-size 1 \
--max-model-len 32768 \
--enforce-eager --model RedHatAI/Mistral-Small-3.1-24B-Instruct-2503-FP8-dynamic
​​See Red Hat AI Inference Server documentation for more details.
Deploy on Red Hat Enterprise Linux AI
# Download model from Red Hat Registry via docker
# Note: This downloads the model to ~/.cache/instructlab/models unless --model-dir is specified.
ilab model download --repository docker://registry.redhat.io/rhelai1/mistral-small-3-1-24b-instruct-2503-fp8-dynamic:1.5
# Serve model via ilab
ilab model serve --model-path ~/.cache/instructlab/models/mistral-small-3-1-24b-instruct-2503-fp8-dynamic
# Chat with model
ilab model chat --model ~/.cache/instructlab/models/mistral-small-3-1-24b-instruct-2503-fp8-dynamic
See Red Hat Enterprise Linux AI documentation for more details.
Deploy on Red Hat Openshift AI
# Setting up vllm server with ServingRuntime
# Save as: vllm-servingruntime.yaml
apiVersion: serving.kserve.io/v1alpha1
kind: ServingRuntime
metadata:
name: vllm-cuda-runtime # OPTIONAL CHANGE: set a unique name
annotations:
openshift.io/display-name: vLLM NVIDIA GPU ServingRuntime for KServe
opendatahub.io/recommended-accelerators: '["nvidia.com/gpu"]'
labels:
opendatahub.io/dashboard: 'true'
spec:
annotations:
prometheus.io/port: '8080'
prometheus.io/path: '/metrics'
multiModel: false
supportedModelFormats:
- autoSelect: true
name: vLLM
containers:
- name: kserve-container
image: quay.io/modh/vllm:rhoai-2.20-cuda # CHANGE if needed. If AMD: quay.io/modh/vllm:rhoai-2.20-rocm
command:
- python
- -m
- vllm.entrypoints.openai.api_server
args:
- "--port=8080"
- "--model=/mnt/models"
- "--served-model-name={{.Name}}"
env:
- name: HF_HOME
value: /tmp/hf_home
ports:
- containerPort: 8080
protocol: TCP
# Attach model to vllm server. This is an NVIDIA template
# Save as: inferenceservice.yaml
apiVersion: serving.kserve.io/v1beta1
kind: InferenceService
metadata:
annotations:
openshift.io/display-name: mistral-small-3-1-24b-instruct-2503-fp8-dynamic # OPTIONAL CHANGE
serving.kserve.io/deploymentMode: RawDeployment
name: mistral-small-3-1-24b-instruct-2503-fp8-dynamic # specify model name. This value will be used to invoke the model in the payload
labels:
opendatahub.io/dashboard: 'true'
spec:
predictor:
maxReplicas: 1
minReplicas: 1
model:
modelFormat:
name: vLLM
name: ''
resources:
limits:
cpu: '2' # this is model specific
memory: 8Gi # this is model specific
nvidia.com/gpu: '1' # this is accelerator specific
requests: # same comment for this block
cpu: '1'
memory: 4Gi
nvidia.com/gpu: '1'
runtime: vllm-cuda-runtime # must match the ServingRuntime name above
storageUri: oci://registry.redhat.io/rhelai1/modelcar-mistral-small-3-1-24b-instruct-2503-fp8-dynamic:1.5
tolerations:
- effect: NoSchedule
key: nvidia.com/gpu
operator: Exists
# make sure first to be in the project where you want to deploy the model
# oc project <project-name>
# apply both resources to run model
# Apply the ServingRuntime
oc apply -f vllm-servingruntime.yaml
# Apply the InferenceService
oc apply -f qwen-inferenceservice.yaml
# Replace <inference-service-name> and <cluster-ingress-domain> below:
# - Run `oc get inferenceservice` to find your URL if unsure.
# Call the server using curl:
curl https://<inference-service-name>-predictor-default.<domain>/v1/chat/completions
-H "Content-Type: application/json" \
-d '{
"model": "mistral-small-3-1-24b-instruct-2503-fp8-dynamic",
"stream": true,
"stream_options": {
"include_usage": true
},
"max_tokens": 1,
"messages": [
{
"role": "user",
"content": "How can a bee fly when its wings are so small?"
}
]
}'
See Red Hat Openshift AI documentation for more details.
Creation
Creation details
This model was created with [llm-compressor](https://github.com/vllm-project/llm-compressor) by running the code snippet below.from llmcompressor.modifiers.quantization import QuantizationModifier
from llmcompressor.transformers import oneshot
from transformers import AutoModelForImageTextToText, AutoProcessor
# Load model
model_stub = "mistralai/Mistral-Small-3.1-24B-Instruct-2503"
model_name = model_stub.split("/")[-1]
model = AutoModelForImageTextToText.from_pretrained(model_stub)
processor = AutoProcessor.from_pretrained(model_stub)
# Configure the quantization algorithm and scheme
recipe = QuantizationModifier(
ignore=["language_model.lm_head", "re:vision_tower.*", "re:multi_modal_projector.*"],
targets="Linear",
scheme="FP8_dynamic",
)
# Apply quantization
oneshot(
model=model,
recipe=recipe,
)
# Save to disk in compressed-tensors format
save_path = model_name + "-FP8-dynamic"
model.save_pretrained(save_path)
processor.save_pretrained(save_path)
print(f"Model and tokenizer saved to: {save_path}")
Evaluation
The model was evaluated on the OpenLLM leaderboard tasks (version 1), MMLU-pro, GPQA, HumanEval and MBPP. Non-coding tasks were evaluated with lm-evaluation-harness, whereas coding tasks were evaluated with a fork of evalplus. vLLM is used as the engine in all cases.
Evaluation details
MMLU
lm_eval \
--model vllm \
--model_args pretrained="RedHatAI/Mistral-Small-3.1-24B-Instruct-2503-FP8-dynamic",dtype=auto,gpu_memory_utilization=0.5,max_model_len=8192,enable_chunk_prefill=True,tensor_parallel_size=2 \
--tasks mmlu \
--num_fewshot 5 \
--apply_chat_template\
--fewshot_as_multiturn \
--batch_size auto
ARC Challenge
lm_eval \
--model vllm \
--model_args pretrained="RedHatAI/Mistral-Small-3.1-24B-Instruct-2503-FP8-dynamic",dtype=auto,gpu_memory_utilization=0.5,max_model_len=8192,enable_chunk_prefill=True,tensor_parallel_size=2 \
--tasks arc_challenge \
--num_fewshot 25 \
--apply_chat_template\
--fewshot_as_multiturn \
--batch_size auto
GSM8k
lm_eval \
--model vllm \
--model_args pretrained="RedHatAI/Mistral-Small-3.1-24B-Instruct-2503-FP8-dynamic",dtype=auto,gpu_memory_utilization=0.9,max_model_len=8192,enable_chunk_prefill=True,tensor_parallel_size=2 \
--tasks gsm8k \
--num_fewshot 8 \
--apply_chat_template\
--fewshot_as_multiturn \
--batch_size auto
Hellaswag
lm_eval \
--model vllm \
--model_args pretrained="RedHatAI/Mistral-Small-3.1-24B-Instruct-2503-FP8-dynamic",dtype=auto,gpu_memory_utilization=0.5,max_model_len=8192,enable_chunk_prefill=True,tensor_parallel_size=2 \
--tasks hellaswag \
--num_fewshot 10 \
--apply_chat_template\
--fewshot_as_multiturn \
--batch_size auto
Winogrande
lm_eval \
--model vllm \
--model_args pretrained="RedHatAI/Mistral-Small-3.1-24B-Instruct-2503-FP8-dynamic",dtype=auto,gpu_memory_utilization=0.5,max_model_len=8192,enable_chunk_prefill=True,tensor_parallel_size=2 \
--tasks winogrande \
--num_fewshot 5 \
--apply_chat_template\
--fewshot_as_multiturn \
--batch_size auto
TruthfulQA
lm_eval \
--model vllm \
--model_args pretrained="RedHatAI/Mistral-Small-3.1-24B-Instruct-2503-FP8-dynamic",dtype=auto,gpu_memory_utilization=0.5,max_model_len=8192,enable_chunk_prefill=True,tensor_parallel_size=2 \
--tasks truthfulqa \
--num_fewshot 0 \
--apply_chat_template\
--batch_size auto
MMLU-pro
lm_eval \
--model vllm \
--model_args pretrained="RedHatAI/Mistral-Small-3.1-24B-Instruct-2503-FP8-dynamic",dtype=auto,gpu_memory_utilization=0.5,max_model_len=8192,enable_chunk_prefill=True,tensor_parallel_size=2 \
--tasks mmlu_pro \
--num_fewshot 5 \
--apply_chat_template\
--fewshot_as_multiturn \
--batch_size auto
Coding
The commands below can be used for mbpp by simply replacing the dataset name.
Generation
python3 codegen/generate.py \
--model RedHatAI/Mistral-Small-3.1-24B-Instruct-2503-FP8-dynamic \
--bs 16 \
--temperature 0.2 \
--n_samples 50 \
--root "." \
--dataset humaneval
Sanitization
python3 evalplus/sanitize.py \
humaneval/RedHatAI--Mistral-Small-3.1-24B-Instruct-2503-FP8-dynamic_vllm_temp_0.2
Evaluation
evalplus.evaluate \
--dataset humaneval \
--samples humaneval/RedHatAI--Mistral-Small-3.1-24B-Instruct-2503-FP8-dynamic_vllm_temp_0.2-sanitized
Accuracy
Category | Benchmark | Mistral-Small-3.1-24B-Instruct-2503 | Mistral-Small-3.1-24B-Instruct-2503-FP8-dynamic (this model) |
Recovery |
---|---|---|---|---|
OpenLLM v1 | MMLU (5-shot) | 80.67 | 80.71 | 100.1% |
ARC Challenge (25-shot) | 72.78 | 72.87 | 100.1% | |
GSM-8K (5-shot, strict-match) | 58.68 | 49.96 | 85.1% | |
Hellaswag (10-shot) | 83.70 | 83.67 | 100.0% | |
Winogrande (5-shot) | 83.74 | 82.56 | 98.6% | |
TruthfulQA (0-shot, mc2) | 70.62 | 70.88 | 100.4% | |
Average | 75.03 | 73.49 | 97.9% | |
MMLU-Pro (5-shot) | 67.25 | 66.86 | 99.4% | |
GPQA CoT main (5-shot) | 42.63 | 41.07 | 99.4% | |
GPQA CoT diamond (5-shot) | 45.96 | 45.45 | 98.9% | |
Coding | HumanEval pass@1 | 84.70 | 84.70 | 100.0% |
HumanEval+ pass@1 | 79.50 | 79.30 | 99.8% | |
MBPP pass@1 | 71.10 | 70.00 | 98.5% | |
MBPP+ pass@1 | 60.60 | 59.50 | 98.2% |
- Downloads last month
- 2,097
Model tree for RedHatAI/Mistral-Small-3.1-24B-Instruct-2503-FP8-dynamic
Base model
mistralai/Mistral-Small-3.1-24B-Base-2503