metadata
library_name: transformers
tags:
- pruna-ai
Model Card for PrunaAI/test-tiny-random-llama4-smashed
This model was created using the pruna library. Pruna is a model optimization framework built for developers, enabling you to deliver more efficient models with minimal implementation overhead.
Usage
First things first, you need to install the pruna library:
pip install pruna
You can then load this model using the following code:
from pruna import PrunaModel
loaded_model = PrunaModel.from_hub("PrunaAI/test-tiny-random-llama4-smashed")
After loading the model, you can use the inference methods of the original model.
Smash Configuration
The compression configuration of the model is stored in the smash_config.json
file.
{
"batcher": null,
"cacher": null,
"compiler": null,
"pruner": null,
"quantizer": null,
"max_batch_size": 1,
"device": "cpu",
"save_fns": [],
"load_fns": [
"transformers"
],
"reapply_after_load": {
"pruner": null,
"quantizer": null,
"cacher": null,
"compiler": null,
"batcher": null
}
}
Model Configuration
The configuration of the model is stored in the config.json
file.
{
"config": {
"architectures": [
"Llama4TextModel"
],
"attention_bias": false,
"attention_chunk_size": 8192,
"attention_dropout": 0.0,
"attn_scale": 0.1,
"attn_temperature_tuning": 4,
"bos_token_id": 200000,
"cache_implementation": "hybrid",
"eos_token_id": [
200001,
200007,
200008
],
"floor_scale": 8192,
"for_llm_compressor": false,
"head_dim": 8,
"hidden_act": "silu",
"hidden_size": 16,
"initializer_range": 0.02,
"interleave_moe_layer_step": 1,
"intermediate_size": 32,
"intermediate_size_mlp": 64,
"max_position_embeddings": 10485760,
"model_type": "llama4_text",
"moe_layers": [
0,
1,
2,
3,
4
],
"no_rope_layers": [
1,
1,
1,
0,
1
],
"num_attention_heads": 10,
"num_experts_per_tok": 1,
"num_hidden_layers": 5,
"num_key_value_heads": 2,
"num_local_experts": 4,
"output_router_logits": false,
"pad_token_id": 200018,
"rms_norm_eps": 1e-05,
"rope_scaling": {
"factor": 8.0,
"high_freq_factor": 4.0,
"low_freq_factor": 1.0,
"original_max_position_embeddings": 8192,
"rope_type": "llama3"
},
"rope_theta": 500000.0,
"router_aux_loss_coef": 0.001,
"router_jitter_noise": 0.0,
"tie_word_embeddings": false,
"torch_dtype": "float32",
"transformers_version": "4.51.3",
"use_cache": true,
"use_qk_norm": true,
"vocab_size": 202048
}
}