OwLim's picture
Upload tokenizer
e31d051 verified
metadata
library_name: transformers
language:
  - jav
license: apache-2.0
base_model: openai/whisper-small
tags:
  - generated_from_trainer
datasets:
  - SLR41_35
metrics:
  - wer
model-index:
  - name: Whisper Small Java
    results:
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: SLR Javanenese 41_35
          type: SLR41_35
          args: 'config: java, split: train, test'
        metrics:
          - type: wer
            value: 29.24663420223432
            name: Wer

Whisper Small Java

This model is a fine-tuned version of openai/whisper-small on the SLR Javanenese 41_35 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4200
  • Wer: 29.2466

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 100
  • training_steps: 1000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.4922 0.16 100 0.6047 37.4678
0.435 0.32 200 0.5572 35.9424
0.5688 0.48 300 0.5090 33.5649
0.4779 0.64 400 0.4799 31.8390
0.4247 0.8 500 0.4540 30.8364
0.42 0.96 600 0.4368 30.2492
0.2276 1.12 700 0.4330 29.6333
0.2137 1.28 800 0.4264 29.5832
0.236 1.44 900 0.4215 29.2395
0.1971 1.6 1000 0.4200 29.2466

Framework versions

  • Transformers 4.51.3
  • Pytorch 2.6.0+cu124
  • Datasets 3.6.0
  • Tokenizers 0.21.1