kanana-1.5-8b-instruct-2505 GGUF Models

Model Generation Details

This model was generated using llama.cpp at commit f5cd27b7.

Ultra-Low-Bit Quantization with IQ-DynamicGate (1-2 bit)

Our latest quantization method introduces precision-adaptive quantization for ultra-low-bit models (1-2 bit), with benchmark-proven improvements on Llama-3-8B. This approach uses layer-specific strategies to preserve accuracy while maintaining extreme memory efficiency.

Benchmark Context

All tests conducted on Llama-3-8B-Instruct using:

  • Standard perplexity evaluation pipeline
  • 2048-token context window
  • Same prompt set across all quantizations

Method

  • Dynamic Precision Allocation:
    • First/Last 25% of layers โ†’ IQ4_XS (selected layers)
    • Middle 50% โ†’ IQ2_XXS/IQ3_S (increase efficiency)
  • Critical Component Protection:
    • Embeddings/output layers use Q5_K
    • Reduces error propagation by 38% vs standard 1-2bit

Quantization Performance Comparison (Llama-3-8B)

Quantization Standard PPL DynamicGate PPL ฮ” PPL Std Size DG Size ฮ” Size Std Speed DG Speed
IQ2_XXS 11.30 9.84 -12.9% 2.5G 2.6G +0.1G 234s 246s
IQ2_XS 11.72 11.63 -0.8% 2.7G 2.8G +0.1G 242s 246s
IQ2_S 14.31 9.02 -36.9% 2.7G 2.9G +0.2G 238s 244s
IQ1_M 27.46 15.41 -43.9% 2.2G 2.5G +0.3G 206s 212s
IQ1_S 53.07 32.00 -39.7% 2.1G 2.4G +0.3G 184s 209s

Key:

  • PPL = Perplexity (lower is better)
  • ฮ” PPL = Percentage change from standard to DynamicGate
  • Speed = Inference time (CPU avx2, 2048 token context)
  • Size differences reflect mixed quantization overhead

Key Improvements:

  • ๐Ÿ”ฅ IQ1_M shows massive 43.9% perplexity reduction (27.46 โ†’ 15.41)
  • ๐Ÿš€ IQ2_S cuts perplexity by 36.9% while adding only 0.2GB
  • โšก IQ1_S maintains 39.7% better accuracy despite 1-bit quantization

Tradeoffs:

  • All variants have modest size increases (0.1-0.3GB)
  • Inference speeds remain comparable (<5% difference)

When to Use These Models

๐Ÿ“Œ Fitting models into GPU VRAM

โœ” Memory-constrained deployments

โœ” Cpu and Edge Devices where 1-2bit errors can be tolerated

โœ” Research into ultra-low-bit quantization

Choosing the Right Model Format

Selecting the correct model format depends on your hardware capabilities and memory constraints.

BF16 (Brain Float 16) โ€“ Use if BF16 acceleration is available

  • A 16-bit floating-point format designed for faster computation while retaining good precision.
  • Provides similar dynamic range as FP32 but with lower memory usage.
  • Recommended if your hardware supports BF16 acceleration (check your device's specs).
  • Ideal for high-performance inference with reduced memory footprint compared to FP32.

๐Ÿ“Œ Use BF16 if:
โœ” Your hardware has native BF16 support (e.g., newer GPUs, TPUs).
โœ” You want higher precision while saving memory.
โœ” You plan to requantize the model into another format.

๐Ÿ“Œ Avoid BF16 if:
โŒ Your hardware does not support BF16 (it may fall back to FP32 and run slower).
โŒ You need compatibility with older devices that lack BF16 optimization.


F16 (Float 16) โ€“ More widely supported than BF16

  • A 16-bit floating-point high precision but with less of range of values than BF16.
  • Works on most devices with FP16 acceleration support (including many GPUs and some CPUs).
  • Slightly lower numerical precision than BF16 but generally sufficient for inference.

๐Ÿ“Œ Use F16 if:
โœ” Your hardware supports FP16 but not BF16.
โœ” You need a balance between speed, memory usage, and accuracy.
โœ” You are running on a GPU or another device optimized for FP16 computations.

๐Ÿ“Œ Avoid F16 if:
โŒ Your device lacks native FP16 support (it may run slower than expected).
โŒ You have memory limitations.


Quantized Models (Q4_K, Q6_K, Q8, etc.) โ€“ For CPU & Low-VRAM Inference

Quantization reduces model size and memory usage while maintaining as much accuracy as possible.

  • Lower-bit models (Q4_K) โ†’ Best for minimal memory usage, may have lower precision.
  • Higher-bit models (Q6_K, Q8_0) โ†’ Better accuracy, requires more memory.

๐Ÿ“Œ Use Quantized Models if:
โœ” You are running inference on a CPU and need an optimized model.
โœ” Your device has low VRAM and cannot load full-precision models.
โœ” You want to reduce memory footprint while keeping reasonable accuracy.

๐Ÿ“Œ Avoid Quantized Models if:
โŒ You need maximum accuracy (full-precision models are better for this).
โŒ Your hardware has enough VRAM for higher-precision formats (BF16/F16).


Very Low-Bit Quantization (IQ3_XS, IQ3_S, IQ3_M, Q4_K, Q4_0)

These models are optimized for extreme memory efficiency, making them ideal for low-power devices or large-scale deployments where memory is a critical constraint.

  • IQ3_XS: Ultra-low-bit quantization (3-bit) with extreme memory efficiency.

    • Use case: Best for ultra-low-memory devices where even Q4_K is too large.
    • Trade-off: Lower accuracy compared to higher-bit quantizations.
  • IQ3_S: Small block size for maximum memory efficiency.

    • Use case: Best for low-memory devices where IQ3_XS is too aggressive.
  • IQ3_M: Medium block size for better accuracy than IQ3_S.

    • Use case: Suitable for low-memory devices where IQ3_S is too limiting.
  • Q4_K: 4-bit quantization with block-wise optimization for better accuracy.

    • Use case: Best for low-memory devices where Q6_K is too large.
  • Q4_0: Pure 4-bit quantization, optimized for ARM devices.

    • Use case: Best for ARM-based devices or low-memory environments.

Summary Table: Model Format Selection

Model Format Precision Memory Usage Device Requirements Best Use Case
BF16 Highest High BF16-supported GPU/CPUs High-speed inference with reduced memory
F16 High High FP16-supported devices GPU inference when BF16 isn't available
Q4_K Medium Low Low CPU or Low-VRAM devices Best for memory-constrained environments
Q6_K Medium Moderate CPU with more memory Better accuracy while still being quantized
Q8_0 High Moderate CPU or GPU with enough VRAM Best accuracy among quantized models
IQ3_XS Very Low Very Low Ultra-low-memory devices Extreme memory efficiency and low accuracy
Q4_0 Low Low ARM or low-memory devices llama.cpp can optimize for ARM devices

Included Files & Details

kanana-1.5-8b-instruct-2505-bf16.gguf

  • Model weights preserved in BF16.
  • Use this if you want to requantize the model into a different format.
  • Best if your device supports BF16 acceleration.

kanana-1.5-8b-instruct-2505-f16.gguf

  • Model weights stored in F16.
  • Use if your device supports FP16, especially if BF16 is not available.

kanana-1.5-8b-instruct-2505-bf16-q8_0.gguf

  • Output & embeddings remain in BF16.
  • All other layers quantized to Q8_0.
  • Use if your device supports BF16 and you want a quantized version.

kanana-1.5-8b-instruct-2505-f16-q8_0.gguf

  • Output & embeddings remain in F16.
  • All other layers quantized to Q8_0.

kanana-1.5-8b-instruct-2505-q4_k.gguf

  • Output & embeddings quantized to Q8_0.
  • All other layers quantized to Q4_K.
  • Good for CPU inference with limited memory.

kanana-1.5-8b-instruct-2505-q4_k_s.gguf

  • Smallest Q4_K variant, using less memory at the cost of accuracy.
  • Best for very low-memory setups.

kanana-1.5-8b-instruct-2505-q6_k.gguf

  • Output & embeddings quantized to Q8_0.
  • All other layers quantized to Q6_K .

kanana-1.5-8b-instruct-2505-q8_0.gguf

  • Fully Q8 quantized model for better accuracy.
  • Requires more memory but offers higher precision.

kanana-1.5-8b-instruct-2505-iq3_xs.gguf

  • IQ3_XS quantization, optimized for extreme memory efficiency.
  • Best for ultra-low-memory devices.

kanana-1.5-8b-instruct-2505-iq3_m.gguf

  • IQ3_M quantization, offering a medium block size for better accuracy.
  • Suitable for low-memory devices.

kanana-1.5-8b-instruct-2505-q4_0.gguf

  • Pure Q4_0 quantization, optimized for ARM devices.
  • Best for low-memory environments.
  • Prefer IQ4_NL for better accuracy.

๐Ÿš€ If you find these models useful

โค Please click "Like" if you find this useful!
Help me test my AI-Powered Network Monitor Assistant with quantum-ready security checks:
๐Ÿ‘‰ Free Network Monitor

๐Ÿ’ฌ How to test:
Choose an AI assistant type:

  • TurboLLM (GPT-4o-mini)
  • HugLLM (Hugginface Open-source)
  • TestLLM (Experimental CPU-only)

What Iโ€™m Testing

Iโ€™m pushing the limits of small open-source models for AI network monitoring, specifically:

  • Function calling against live network services
  • How small can a model go while still handling:
    • Automated Nmap scans
    • Quantum-readiness checks
    • Network Monitoring tasks

๐ŸŸก TestLLM โ€“ Current experimental model (llama.cpp on 2 CPU threads):

  • โœ… Zero-configuration setup
  • โณ 30s load time (slow inference but no API costs)
  • ๐Ÿ”ง Help wanted! If youโ€™re into edge-device AI, letโ€™s collaborate!

Other Assistants

๐ŸŸข TurboLLM โ€“ Uses gpt-4o-mini for:

๐Ÿ”ต HugLLM โ€“ Latest Open-source models:

  • ๐ŸŒ Runs on Hugging Face Inference API

๐Ÿ’ก Example commands to you could test:

  1. "Give me info on my websites SSL certificate"
  2. "Check if my server is using quantum safe encyption for communication"
  3. "Run a comprehensive security audit on my server"
  4. '"Create a cmd processor to .. (what ever you want)" Note you need to install a Free Network Monitor Agent to run the .net code from. This is a very flexible and powerful feature. Use with caution!



๐Ÿค— 1.5 HF Models   |   ๐Ÿ“• 1.5 Blog   |   ๐Ÿ“œ Technical Report

News ๐Ÿ”ฅ


Table of Contents


Kanana 1.5

Kanana 1.5, a newly introduced version of the Kanana model family, presents substantial enhancements in coding, mathematics, and function calling capabilities over the previous version, enabling broader application to more complex real-world problems. This new version now can handle up to 32K tokens length natively and up to 128K tokens using YaRN, allowing the model to maintain coherence when handling extensive documents or engaging in extended conversations. Furthermore, Kanana 1.5 delivers more natural and accurate conversations through a refined post-training process.



Neither the pre-training nor the post-training data includes Kakao user data.

Performance

Base Model Evaluation

Models MMLU KMMLU HAERAE HumanEval MBPP GSM8K
Kanana-1.5-8B 64.24 48.94 82.77 61.59 57.80 63.53
Kanana-8B 64.22 48.30 83.41 40.24 51.40 57.09

Instruct Model Evaluation

Models MT-Bench KoMT-Bench IFEval HumanEval+ MBPP+ GSM8K (0-shot) MATH MMLU (0-shot, CoT) KMMLU (0-shot, CoT) FunctionChatBench
Kanana-1.5-8B* 7.76 7.63 80.11 76.83 67.99 87.64 67.54 68.82 48.28 58.00
Kanana-8B 7.13 6.92 76.91 62.20 43.92 79.23 37.68 66.50 47.43 17.37

* Models released under Apache 2.0 are trained on the latest versions compared to other models.


Processing 32K+ Length

Currently, the config.json uploaded to HuggingFace is configured for token lengths of 32,768 or less. To process tokens beyond this length, YaRN must be applied. By updating the config.json with the following parameters, you can apply YaRN to handle token sequences up to 128K in length:

"rope_scaling": {
    "factor": 4.4,
    "original_max_position_embeddings": 32768,
    "type": "yarn",
    "beta_fast": 64,
    "beta_slow": 2
},

Contributors

  • Language Model Training: Yunju Bak, Doohae Jung, Boseop Kim, Nayeon Kim, Hojin Lee, Jaesun Park, Minho Ryu
  • Language Model Alignment: Jiyeon Ham, Seungjae Jung, Hyunho Kim, Hyunwoong Ko, Changmin Lee, Daniel Wontae Nam
  • AI Engineering: Youmin Kim, Hyeongju Kim

Citation

@misc{kananallmteam2025kananacomputeefficientbilinguallanguage,
      title={Kanana: Compute-efficient Bilingual Language Models}, 
      author={Kanana LLM Team and Yunju Bak and Hojin Lee and Minho Ryu and Jiyeon Ham and Seungjae Jung and Daniel Wontae Nam and Taegyeong Eo and Donghun Lee and Doohae Jung and Boseop Kim and Nayeon Kim and Jaesun Park and Hyunho Kim and Hyunwoong Ko and Changmin Lee and Kyoung-Woon On and Seulye Baeg and Junrae Cho and Sunghee Jung and Jieun Kang and EungGyun Kim and Eunhwa Kim and Byeongil Ko and Daniel Lee and Minchul Lee and Miok Lee and Shinbok Lee and Gaeun Seo},
      year={2025},
      eprint={2502.18934},
      archivePrefix={arXiv},
      primaryClass={cs.CL},
      url={https://arxiv.org/abs/2502.18934}, 
}

Contact

Downloads last month
1,241
GGUF
Model size
8.03B params
Architecture
llama
Hardware compatibility
Log In to view the estimation

2-bit

3-bit

4-bit

5-bit

6-bit

8-bit

16-bit

Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support