llama-2-7b-coder / README.md
MRNH's picture
Update README.md
3221792 verified
|
raw
history blame
1.51 kB
metadata
language:
  - en
pipeline_tag: text2text-generation
metrics:
  - f1
tags:
  - grammatical error correction
  - GEC
  - english

This is a fine-tuned version of LLAMA2 trained (7b) on spider, sql-create-context.

To initialize the model:

bnb_config = BitsAndBytesConfig( load_in_4bit=use_4bit, bnb_4bit_quant_type=bnb_4bit_quant_type, bnb_4bit_compute_dtype=compute_dtype, bnb_4bit_use_double_quant=use_nested_quant, )

model = AutoModelForCausalLM.from_pretrained( model_name, quantization_config=bnb_config, device_map=device_map, trust_remote_code=True )

Use the tokenizer:

tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) tokenizer.pad_token = tokenizer.eos_token tokenizer.padding_side = "right"

To get the prompt: dataset = dataset.map( lambda example: { "input": "### Instruction: \nYou are a powerful text-to-SQL model.
Your job is to answer questions about a database. You are given
a question and context regarding one or more tables. \n\nYou must
output the SQL query that answers the question.
\n\n
### Dialect:\n\nsqlite\n\n
### question:\n\n"+ example["question"]+"
\n\n### Context:\n\n"+example["context"], "answer": example["answer"] } )

To generate text using the model:

output = model.generate(input["input_ids"])