MoTCoder-15B-v1.0 / README.md
JingyaoLi's picture
Update README.md
f349f96
|
raw
history blame
6.12 kB
metadata
license: bigscience-openrail-m
metrics:
  - code_eval
library_name: transformers
tags:
  - code

MoTCoder: Elevating Large Language Models with Modular of Thought for Challenging Programming Tasks

This is the official model repository of MoTCoder: Elevating Large Language Models with Modular of Thought for Challenging Programming Tasks.

Abstract

Large Language Models (LLMs) have showcased impressive capabilities in handling straightforward programming tasks. However, their performance tends to falter when confronted with more challenging programming problems. We observe that conventional models often generate solutions as monolithic code blocks, restricting their effectiveness in tackling intricate questions. To overcome this limitation, we present Modular-of-Thought Coder (MoTCoder). We introduce a pioneering framework for MoT instruction tuning, designed to promote the decomposition of tasks into logical sub-tasks and sub-modules. Our investigations reveal that, through the cultivation and utilization of sub-modules, MoTCoder significantly improves both the modularity and correctness of the generated solutions, leading to substantial relative pass@1 improvements of 12.9% on APPS and 9.43% on CodeContests.

MoTCoder Framework

Performance

Performance on APPS

Performance on APPS

Model Size Pass@ Introductory Interview Competition All
GPT-Neo 2.7B 1 3.90 0.57 0.00 1.12
5 5.50 0.80 0.00 1.58
Codex 12B 1 4.14 0.14 0.02 0.92
5 9.65 0.51 0.09 2.25
1000 25.02 3.70 3.23 7.87
AlphaCode 1B 1000 17.67 5.24 7.06 8.09
AlphaCode (Filtered 1k) 5 14.36 5.63 4.58 7.17
AlphaCode (Filtered 10k) 5 18.18 8.21 6.65 9.89
AlphaCode (Filtered 50k) 5 20.36 9.66 7.75 11.42
StarCoder 15B 1 7.25 6.89 4.08 6.40
WizardCoder 15B 1 26.04 4.21 0.81 7.90
CodeLlama 7B 5 10.76 2.01 0.77 3.51
10 15.59 3.12 1.41 5.27
100 33.52 9.40 7.13 13.77
13B 5 23.74 5.63 2.05 8.54
10 30.19 8.12 3.35 11.58
100 48.99 18.40 11.98 23.23
34B 5 32.81 8.75 2.88 12.39
10 38.97 12.16 4.69 16.03
100 56.32 24.31 15.39 28.93
CodeLlama-Python 7B 5 12.72 4.18 1.31 5.31
10 18.50 6.25 2.24 7.90
100 38.26 14.94 9.12 18.44
13B 5 26.33 7.06 2.79 10.06
10 32.77 10.03 4.33 13.44
100 51.60 21.46 14.60 26.12
34B 5 28.94 7.80 3.45 11.16
10 35.91 11.12 5.53 14.96
100 54.92 23.90 16.81 28.69
CodeLlama-Instruct 7B 5 12.85 2.07 1.13 4.04
10 17.86 3.12 1.95 5.83
100 35.37 9.44 8.45 14.43
13B 5 24.01 6.93 2.39 9.44
10 30.27 9.58 3.83 12.57
100 48.73 19.55 13.12 24.10
34B 5 31.56 7.86 3.21 11.67
10 37.80 11.08 5.12 15.23
100 55.72 22.80 16.38 28.10
MoTCoder 15B 1 33.80 19.70 11.09 20.80
code-davinci-002 - 1 29.30 6.40 2.50 10.20
GPT3.5 - 1 48.00 19.42 5.42 22.33

Performance on CodeContests

Model Size Revision Val pass@1 Val pass@5 Test pass@1 Test pass@5 Average pass@1 Average pass@5
code-davinci-002 - - - - 1.00 - 1.00 -
code-davinci-002 + CodeT - 5 - - 3.20 - 3.20 -
WizardCoder 15B - 1.11 3.18 1.98 3.27 1.55 3.23
WizardCoder + CodeChain 15B 5 2.35 3.29 2.48 3.30 2.42 3.30
MoTCoder 15B - 2.39 7.69 6.18 12.73 4.29 10.21
GPT3.5 - - 6.81 16.23 5.82 11.16 6.32 13.70