rtdetr-v2-r50-cppe5-finetune-2

This model is a fine-tuned version of PekingU/rtdetr_v2_r50vd on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 10.6505
  • Map: 0.4323
  • Map 50: 0.8963
  • Map 75: 0.3219
  • Map Small: 0.3756
  • Map Medium: 0.5476
  • Map Large: 0.7106
  • Mar 1: 0.2852
  • Mar 10: 0.4788
  • Mar 100: 0.5715
  • Mar Small: 0.5305
  • Mar Medium: 0.6698
  • Mar Large: 0.7583
  • Map Football: 0.4833
  • Mar 100 Football: 0.5867
  • Map Player: 0.3814
  • Mar 100 Player: 0.5564

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 300
  • num_epochs: 12

Training results

Training Loss Epoch Step Validation Loss Map Map 50 Map 75 Map Small Map Medium Map Large Mar 1 Mar 10 Mar 100 Mar Small Mar Medium Mar Large Map Football Mar 100 Football Map Player Mar 100 Player
No log 1.0 62 17.5576 0.1072 0.2555 0.0663 0.0878 0.1914 0.1325 0.0543 0.208 0.3404 0.2858 0.4734 0.5447 0.0102 0.2166 0.2042 0.4642
No log 2.0 124 9.5985 0.3615 0.8054 0.2547 0.3082 0.5041 0.5671 0.2189 0.4346 0.5265 0.4739 0.6782 0.6455 0.3255 0.4828 0.3975 0.5702
No log 3.0 186 9.6654 0.3647 0.8181 0.2656 0.3115 0.5271 0.6 0.2353 0.4404 0.5339 0.4772 0.685 0.7447 0.3696 0.5225 0.3597 0.5452
No log 4.0 248 10.0423 0.3637 0.8276 0.2328 0.3011 0.5362 0.6091 0.2209 0.4219 0.5103 0.4515 0.674 0.7477 0.345 0.474 0.3823 0.5467
No log 5.0 310 10.2540 0.3952 0.8224 0.3201 0.3304 0.5617 0.6733 0.2556 0.4589 0.548 0.4924 0.6929 0.7598 0.4203 0.5509 0.3702 0.5452
No log 6.0 372 10.4936 0.3862 0.8134 0.3167 0.3148 0.5569 0.6616 0.2459 0.4368 0.5254 0.4659 0.6818 0.797 0.3995 0.5089 0.373 0.5418
No log 7.0 434 10.6991 0.4119 0.8405 0.3383 0.348 0.5668 0.6627 0.2615 0.4528 0.5379 0.4824 0.6929 0.7515 0.4282 0.5219 0.3955 0.5539
No log 8.0 496 10.7472 0.4216 0.8338 0.3662 0.3592 0.5737 0.6884 0.2668 0.4624 0.5513 0.4966 0.701 0.7561 0.4488 0.5438 0.3943 0.5588
19.6326 9.0 558 10.9720 0.3984 0.8353 0.3183 0.3307 0.5564 0.7087 0.2605 0.4449 0.5241 0.4658 0.6661 0.797 0.4371 0.5302 0.3598 0.518
19.6326 10.0 620 10.9521 0.4117 0.8392 0.3436 0.3458 0.569 0.6785 0.2584 0.4495 0.5315 0.4753 0.6815 0.75 0.436 0.5195 0.3873 0.5435
19.6326 11.0 682 11.0008 0.4158 0.8449 0.3501 0.3509 0.5711 0.6707 0.2626 0.4517 0.5369 0.4837 0.6821 0.7447 0.4374 0.5237 0.3942 0.5502
19.6326 12.0 744 11.0544 0.411 0.8363 0.3415 0.3436 0.5727 0.6689 0.259 0.4496 0.5331 0.4775 0.6857 0.7439 0.4336 0.5225 0.3883 0.5438

Framework versions

  • Transformers 4.51.3
  • Pytorch 2.7.0+cu126
  • Datasets 3.6.0
  • Tokenizers 0.21.1
Downloads last month
10
Safetensors
Model size
42.9M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for Ducco/rtdetr-v2-r50-cppe5-finetune-2

Finetuned
(14)
this model