A newer version of this model is available:
Derify/ChemMRL-beta
Chem-MRL (SentenceTransformer)
This is a trained Chem-MRL sentence-transformers model. It maps SMILES to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, database indexing, molecular classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Maximum Sequence Length: 128 tokens
- Output Dimensionality: 1024 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Repository: Chem-MRL on GitHub
- Demo App Repository: Chem-MRL-demo on GitHub
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: RobertaModel (ChemBERTa)
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("Derify/ChemMRL-alpha")
# Run inference
sentences = [
'CCO',
"CC(C)O",
'CC(=O)O',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Training Details
Framework Versions
- Python: 3.12.9
- Sentence Transformers: 4.0.1
- Transformers: 4.48.2
- PyTorch: 2.6.0+cu124
- Accelerate: 1.4.0
- Datasets: 3.3.2
- Tokenizers: 0.21.0
Citation
- Chithrananda, Seyone, et al. "ChemBERTa: Large-Scale Self-Supervised Pretraining for Molecular Property Prediction." arXiv [Cs.LG], 2020. Link.
- Ahmad, Walid, et al. "ChemBERTa-2: Towards Chemical Foundation Models." arXiv [Cs.LG], 2022. Link.
- Kusupati, Aditya, et al. "Matryoshka Representation Learning." arXiv [Cs.LG], 2022. Link.
- Li, Xianming, et al. "2D Matryoshka Sentence Embeddings." arXiv [Cs.CL], 2024. Link.
- Bajusz, Dávid, et al. "Why is the Tanimoto Index an Appropriate Choice for Fingerprint-Based Similarity Calculations?" J Cheminform, 7, 20 (2015). Link.
- Li, Xiaoya, et al. "Dice Loss for Data-imbalanced NLP Tasks." arXiv [Cs.CL], 2020. Link
- Reimers, Nils, and Gurevych, Iryna. "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks." Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing, 2019. Link.
Model Card Authors
Model Card Contact
Manny Cortes (manny@derifyai.com)
- Downloads last month
- 806
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support