Llama-3-8b-Ita / README.md
DeepMount00's picture
Update README.md
f95f9e2 verified
metadata
language:
  - it
  - en
license: llama3
library_name: transformers
base_model: meta-llama/Meta-Llama-3-8B
datasets:
  - DeepMount00/llm_ita_ultra
model-index:
  - name: Llama-3-8b-Ita
    results:
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: IFEval (0-Shot)
          type: HuggingFaceH4/ifeval
          args:
            num_few_shot: 0
        metrics:
          - type: inst_level_strict_acc and prompt_level_strict_acc
            value: 75.3
            name: strict accuracy
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=DeepMount00/Llama-3-8b-Ita
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: BBH (3-Shot)
          type: BBH
          args:
            num_few_shot: 3
        metrics:
          - type: acc_norm
            value: 28.08
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=DeepMount00/Llama-3-8b-Ita
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MATH Lvl 5 (4-Shot)
          type: hendrycks/competition_math
          args:
            num_few_shot: 4
        metrics:
          - type: exact_match
            value: 5.36
            name: exact match
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=DeepMount00/Llama-3-8b-Ita
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: GPQA (0-shot)
          type: Idavidrein/gpqa
          args:
            num_few_shot: 0
        metrics:
          - type: acc_norm
            value: 7.38
            name: acc_norm
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=DeepMount00/Llama-3-8b-Ita
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MuSR (0-shot)
          type: TAUR-Lab/MuSR
          args:
            num_few_shot: 0
        metrics:
          - type: acc_norm
            value: 11.68
            name: acc_norm
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=DeepMount00/Llama-3-8b-Ita
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MMLU-PRO (5-shot)
          type: TIGER-Lab/MMLU-Pro
          config: main
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 31.69
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=DeepMount00/Llama-3-8b-Ita
          name: Open LLM Leaderboard

💡 Found this resource helpful? Creating and maintaining open source AI models and datasets requires significant computational resources. If this work has been valuable to you, consider supporting my research to help me continue building tools that benefit the entire AI community. Every contribution directly funds more open source innovation! ☕


Model Architecture

Evaluation

For a detailed comparison of model performance, check out the Leaderboard for Italian Language Models.

Here's a breakdown of the performance metrics:

Metric hellaswag_it acc_norm arc_it acc_norm m_mmlu_it 5-shot acc Average
Accuracy Normalized 0.6518 0.5441 0.5729 0.5896

How to Use

from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

MODEL_NAME = "DeepMount00/Llama-3-8b-Ita"

model = AutoModelForCausalLM.from_pretrained(MODEL_NAME, torch_dtype=torch.bfloat16).eval()
model.to(device)
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)

def generate_answer(prompt):
    messages = [
        {"role": "user", "content": prompt},
    ]
    model_inputs = tokenizer.apply_chat_template(messages, return_tensors="pt").to(device)
    generated_ids = model.generate(model_inputs, max_new_tokens=200, do_sample=True,
                                          temperature=0.001)
    decoded = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)
    return decoded[0]

prompt = "Come si apre un file json in python?"
answer = generate_answer(prompt)
print(answer)

Developer

[Michele Montebovi]

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 26.58
IFEval (0-Shot) 75.30
BBH (3-Shot) 28.08
MATH Lvl 5 (4-Shot) 5.36
GPQA (0-shot) 7.38
MuSR (0-shot) 11.68
MMLU-PRO (5-shot) 31.69