helsinki_new_ver4

This model is a fine-tuned version of Helsinki-NLP/opus-mt-en-ZH on the mozilla-foundation/common_voice_12_0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5400
  • Bleu: 2.4304

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-06
  • train_batch_size: 8
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1000
  • training_steps: 23000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Bleu
0.7027 0.6418 1000 0.6716 2.8141
0.6767 1.2837 2000 0.6546 9.1063
0.6526 1.9255 3000 0.6394 1.9859
0.643 2.5674 4000 0.6252 12.4882
0.6445 3.2092 5000 0.6118 8.8121
0.6326 3.8511 6000 0.6010 12.7405
0.604 4.4929 7000 0.5926 1.4845
0.5877 5.1348 8000 0.5827 12.9972
0.5721 5.7766 9000 0.5753 1.5982
0.5826 6.4185 10000 0.5672 1.6842
0.5622 7.0603 11000 0.5619 14.0609
0.5486 7.7022 12000 0.5557 14.2992
0.5451 8.3440 13000 0.5507 15.4044
0.5571 8.9859 14000 0.5463 8.4964
0.5448 9.6277 15000 0.5422 8.8203
0.5306 10.2696 16000 0.5400 2.4304

Framework versions

  • Transformers 4.51.3
  • Pytorch 2.6.0+cu124
  • Datasets 3.5.1
  • Tokenizers 0.21.1
Downloads last month
2
Safetensors
Model size
77.5M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Dataset used to train Curiousfox/helsinki_new_ver4