helsinki_new_ver3

This model is a fine-tuned version of Helsinki-NLP/opus-mt-en-ZH on the mozilla-foundation/common_voice_17_0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7044
  • Bleu: 2.2015

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-06
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1000
  • training_steps: 23000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Bleu
0.9675 0.32 1000 1.0573 0.7690
0.9217 0.64 2000 0.9924 1.3531
0.8782 0.96 3000 0.9463 1.8407
0.8377 1.28 4000 0.9078 3.0190
0.8304 1.6 5000 0.8765 2.1759
0.8114 1.92 6000 0.8479 3.2072
0.7735 2.24 7000 0.8247 4.0669
0.7667 2.56 8000 0.8051 5.6676
0.7547 2.88 9000 0.7882 4.2755
0.7151 3.2 10000 0.7712 5.7800
0.7103 3.52 11000 0.7591 6.0659
0.7095 3.84 12000 0.7458 7.0038
0.7044 4.16 13000 0.7351 1.7120
0.6717 4.48 14000 0.7250 8.0104
0.6856 4.8 15000 0.7169 2.1741
0.6755 5.12 16000 0.7097 2.1614
0.6635 5.44 17000 0.7044 2.2015

Framework versions

  • Transformers 4.51.3
  • Pytorch 2.6.0+cu124
  • Datasets 3.5.1
  • Tokenizers 0.21.1
Downloads last month
4
Safetensors
Model size
77.5M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Dataset used to train Curiousfox/helsinki_new_ver3