helsinki_new_ver1

This model is a fine-tuned version of Helsinki-NLP/opus-mt-en-ZH on the sarahwei/Taiwanese-Minnan-Example-Sentences dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4153
  • Bleu: 0.0081

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-06
  • train_batch_size: 8
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1000
  • training_steps: 20000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Bleu
0.8615 0.5656 1000 0.5171 0.0028
0.809 1.1312 2000 0.4937 0.0035
0.802 1.6968 3000 0.4801 0.0038
0.763 2.2624 4000 0.4691 0.0052
0.7475 2.8281 5000 0.4607 0.0053
0.7363 3.3937 6000 0.4534 0.0057
0.7263 3.9593 7000 0.4470 0.0057
0.7166 4.5249 8000 0.4413 0.0062
0.7119 5.0905 9000 0.4363 0.0061
0.7097 5.6561 10000 0.4324 0.0064
0.6921 6.2217 11000 0.4289 0.0070
0.692 6.7873 12000 0.4258 0.0064
0.6773 7.3529 13000 0.4232 0.0067
0.6918 7.9186 14000 0.4210 0.0073
0.6789 8.4842 15000 0.4194 0.0078
0.6801 9.0498 16000 0.4178 0.0072
0.6734 9.6154 17000 0.4167 0.0070
0.6808 10.1810 18000 0.4159 0.0079
0.669 10.7466 19000 0.4155 0.0081
0.6667 11.3122 20000 0.4153 0.0081

Framework versions

  • Transformers 4.51.3
  • Pytorch 2.6.0+cu124
  • Datasets 3.5.1
  • Tokenizers 0.21.1
Downloads last month
2
Safetensors
Model size
77.5M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Dataset used to train Curiousfox/helsinki_new_ver1