SentenceTransformer based on intfloat/multilingual-e5-small

This is a sentence-transformers model finetuned from intfloat/multilingual-e5-small. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: intfloat/multilingual-e5-small
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 384 dimensions
  • Similarity Function: Cosine Similarity

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("CloudlessSky/fullname_encoder_v1")
# Run inference
sentences = [
    'ромазанов хусин алеевич',
    'роиазанов хусир алеевич',
    'морозов тимофей васильевич',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Training Details

Training Dataset

Unnamed Dataset

  • Size: 2,000,000 training samples
  • Columns: sentence1, sentence2, and label
  • Approximate statistics based on the first 1000 samples:
    sentence1 sentence2 label
    type string string int
    details
    • min: 6 tokens
    • mean: 10.9 tokens
    • max: 19 tokens
    • min: 6 tokens
    • mean: 11.86 tokens
    • max: 27 tokens
    • 0: ~48.70%
    • 1: ~51.30%
  • Samples:
    sentence1 sentence2 label
    лебедев александр арсентьевич лебедев александр арсеньевич 0
    кирюхин сергей никитович мухин сергей никитович 0
    додонов иван сидорович сидоров иван спиридонович 0
  • Loss: ContrastiveLoss with these parameters:
    {
        "distance_metric": "SiameseDistanceMetric.COSINE_DISTANCE",
        "margin": 0.5,
        "size_average": true
    }
    

Evaluation Dataset

Unnamed Dataset

  • Size: 663,132 evaluation samples
  • Columns: sentence1, sentence2, and label
  • Approximate statistics based on the first 1000 samples:
    sentence1 sentence2 label
    type string string int
    details
    • min: 5 tokens
    • mean: 10.92 tokens
    • max: 22 tokens
    • min: 2 tokens
    • mean: 11.77 tokens
    • max: 24 tokens
    • 0: ~50.20%
    • 1: ~49.80%
  • Samples:
    sentence1 sentence2 label
    иванисько ульян иванович ульян иванисько иванович 1
    топычканов иван александрович кабанов иван александрович 0
    джавадов камал джавад оглы джавадов джавад камал оглы 1
  • Loss: ContrastiveLoss with these parameters:
    {
        "distance_metric": "SiameseDistanceMetric.COSINE_DISTANCE",
        "margin": 0.5,
        "size_average": true
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 64
  • per_device_eval_batch_size: 128
  • num_train_epochs: 8

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 64
  • per_device_eval_batch_size: 128
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 5e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 8
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.0
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • tp_size: 0
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: proportional

Training Logs

Click to expand
Epoch Step Training Loss Validation Loss
0.016 500 0.0143 -
0.032 1000 0.0119 -
0.048 1500 0.0112 -
0.064 2000 0.0108 -
0.08 2500 0.0105 -
0.096 3000 0.0098 -
0.112 3500 0.0101 -
0.128 4000 0.0096 -
0.144 4500 0.0096 -
0.16 5000 0.0093 -
0.176 5500 0.0093 -
0.192 6000 0.0089 -
0.208 6500 0.0087 -
0.224 7000 0.0086 -
0.24 7500 0.0084 -
0.256 8000 0.0083 -
0.272 8500 0.0082 -
0.288 9000 0.008 -
0.304 9500 0.0079 -
0.32 10000 0.008 0.0055
0.336 10500 0.0077 -
0.352 11000 0.0077 -
0.368 11500 0.0076 -
0.384 12000 0.0073 -
0.4 12500 0.0074 -
0.416 13000 0.0074 -
0.432 13500 0.0074 -
0.448 14000 0.0075 -
0.464 14500 0.0072 -
0.48 15000 0.007 -
0.496 15500 0.007 -
0.512 16000 0.0069 -
0.528 16500 0.0071 -
0.544 17000 0.0067 -
0.56 17500 0.007 -
0.576 18000 0.0068 -
0.592 18500 0.0068 -
0.608 19000 0.0069 -
0.624 19500 0.0067 -
0.64 20000 0.0067 0.0044
0.656 20500 0.0065 -
0.672 21000 0.0064 -
0.688 21500 0.0065 -
0.704 22000 0.0065 -
0.72 22500 0.0064 -
0.736 23000 0.0064 -
0.752 23500 0.0063 -
0.768 24000 0.0064 -
0.784 24500 0.0063 -
0.8 25000 0.0063 -
0.816 25500 0.0062 -
0.832 26000 0.0063 -
0.848 26500 0.0062 -
0.864 27000 0.006 -
0.88 27500 0.006 -
0.896 28000 0.006 -
0.912 28500 0.0061 -
0.928 29000 0.0061 -
0.944 29500 0.0059 -
0.96 30000 0.006 0.0039
0.976 30500 0.0059 -
0.992 31000 0.0059 -
1.008 31500 0.0057 -
1.024 32000 0.0056 -
1.04 32500 0.0056 -
1.056 33000 0.0056 -
1.072 33500 0.0056 -
1.088 34000 0.0056 -
1.104 34500 0.0054 -
1.12 35000 0.0056 -
1.1360 35500 0.0055 -
1.152 36000 0.0053 -
1.168 36500 0.0055 -
1.184 37000 0.0054 -
1.2 37500 0.0056 -
1.216 38000 0.0054 -
1.232 38500 0.0053 -
1.248 39000 0.0055 -
1.264 39500 0.0054 -
1.28 40000 0.0055 0.0037
1.296 40500 0.0053 -
1.312 41000 0.0052 -
1.328 41500 0.0052 -
1.3440 42000 0.0054 -
1.3600 42500 0.0055 -
1.376 43000 0.0053 -
1.392 43500 0.0054 -
1.408 44000 0.0053 -
1.424 44500 0.0053 -
1.44 45000 0.0053 -
1.456 45500 0.0053 -
1.472 46000 0.0051 -
1.488 46500 0.0053 -
1.504 47000 0.0052 -
1.52 47500 0.0052 -
1.536 48000 0.0052 -
1.552 48500 0.005 -
1.568 49000 0.005 -
1.584 49500 0.0052 -
1.6 50000 0.0053 0.0036
1.616 50500 0.0052 -
1.6320 51000 0.0052 -
1.6480 51500 0.005 -
1.6640 52000 0.0051 -
1.6800 52500 0.005 -
1.696 53000 0.0051 -
1.712 53500 0.0051 -
1.728 54000 0.005 -
1.744 54500 0.0049 -
1.76 55000 0.0049 -
1.776 55500 0.0049 -
1.792 56000 0.0051 -
1.808 56500 0.0049 -
1.8240 57000 0.0049 -
1.8400 57500 0.0051 -
1.8560 58000 0.0049 -
1.8720 58500 0.005 -
1.888 59000 0.0049 -
1.904 59500 0.0049 -
1.92 60000 0.0048 0.0034
1.936 60500 0.005 -
1.952 61000 0.0048 -
1.968 61500 0.0048 -
1.984 62000 0.0049 -
2.0 62500 0.0049 -
2.016 63000 0.0046 -
2.032 63500 0.0045 -
2.048 64000 0.0045 -
2.064 64500 0.0046 -
2.08 65000 0.0044 -
2.096 65500 0.0046 -
2.112 66000 0.0045 -
2.128 66500 0.0046 -
2.144 67000 0.0045 -
2.16 67500 0.0044 -
2.176 68000 0.0045 -
2.192 68500 0.0046 -
2.208 69000 0.0046 -
2.224 69500 0.0045 -
2.24 70000 0.0046 0.0033
2.2560 70500 0.0045 -
2.2720 71000 0.0045 -
2.288 71500 0.0045 -
2.304 72000 0.0045 -
2.32 72500 0.0045 -
2.336 73000 0.0045 -
2.352 73500 0.0046 -
2.368 74000 0.0045 -
2.384 74500 0.0045 -
2.4 75000 0.0044 -
2.416 75500 0.0044 -
2.432 76000 0.0045 -
2.448 76500 0.0045 -
2.464 77000 0.0045 -
2.48 77500 0.0045 -
2.496 78000 0.0044 -
2.512 78500 0.0044 -
2.528 79000 0.0044 -
2.544 79500 0.0046 -
2.56 80000 0.0045 0.0032
2.576 80500 0.0045 -
2.592 81000 0.0044 -
2.608 81500 0.0043 -
2.624 82000 0.0045 -
2.64 82500 0.0043 -
2.656 83000 0.0044 -
2.672 83500 0.0043 -
2.6880 84000 0.0043 -
2.7040 84500 0.0043 -
2.7200 85000 0.0044 -
2.7360 85500 0.0044 -
2.752 86000 0.0044 -
2.768 86500 0.0044 -
2.784 87000 0.0043 -
2.8 87500 0.0043 -
2.816 88000 0.0042 -
2.832 88500 0.0044 -
2.848 89000 0.0044 -
2.864 89500 0.0044 -
2.88 90000 0.0043 0.0031
2.896 90500 0.0043 -
2.912 91000 0.0044 -
2.928 91500 0.0043 -
2.944 92000 0.0043 -
2.96 92500 0.0042 -
2.976 93000 0.0042 -
2.992 93500 0.0042 -
3.008 94000 0.0041 -
3.024 94500 0.0038 -
3.04 95000 0.004 -
3.056 95500 0.0038 -
3.072 96000 0.0039 -
3.088 96500 0.0039 -
3.104 97000 0.0039 -
3.12 97500 0.0039 -
3.136 98000 0.0039 -
3.152 98500 0.0038 -
3.168 99000 0.004 -
3.184 99500 0.004 -
3.2 100000 0.004 0.0031
3.216 100500 0.0039 -
3.232 101000 0.0038 -
3.248 101500 0.004 -
3.2640 102000 0.0039 -
3.2800 102500 0.0041 -
3.296 103000 0.004 -
3.312 103500 0.0039 -
3.328 104000 0.0039 -
3.344 104500 0.004 -
3.36 105000 0.004 -
3.376 105500 0.004 -
3.392 106000 0.0041 -
3.408 106500 0.004 -
3.424 107000 0.0039 -
3.44 107500 0.0039 -
3.456 108000 0.004 -
3.472 108500 0.0039 -
3.488 109000 0.0038 -
3.504 109500 0.0039 -
3.52 110000 0.0039 0.0030
3.536 110500 0.0041 -
3.552 111000 0.0039 -
3.568 111500 0.0041 -
3.584 112000 0.0038 -
3.6 112500 0.0038 -
3.616 113000 0.0039 -
3.632 113500 0.0038 -
3.648 114000 0.0039 -
3.664 114500 0.0038 -
3.68 115000 0.0038 -
3.6960 115500 0.004 -
3.7120 116000 0.0038 -
3.7280 116500 0.0039 -
3.7440 117000 0.0039 -
3.76 117500 0.0038 -
3.776 118000 0.0039 -
3.792 118500 0.0039 -
3.808 119000 0.0038 -
3.824 119500 0.0039 -
3.84 120000 0.0039 0.0029
3.856 120500 0.0039 -
3.872 121000 0.0039 -
3.888 121500 0.0037 -
3.904 122000 0.0038 -
3.92 122500 0.0038 -
3.936 123000 0.0038 -
3.952 123500 0.0039 -
3.968 124000 0.0038 -
3.984 124500 0.0039 -
4.0 125000 0.0039 -
4.016 125500 0.0034 -
4.032 126000 0.0035 -
4.048 126500 0.0036 -
4.064 127000 0.0035 -
4.08 127500 0.0035 -
4.096 128000 0.0035 -
4.112 128500 0.0035 -
4.128 129000 0.0036 -
4.144 129500 0.0035 -
4.16 130000 0.0035 0.0029
4.176 130500 0.0035 -
4.192 131000 0.0035 -
4.208 131500 0.0035 -
4.224 132000 0.0036 -
4.24 132500 0.0036 -
4.256 133000 0.0036 -
4.272 133500 0.0035 -
4.288 134000 0.0034 -
4.304 134500 0.0036 -
4.32 135000 0.0035 -
4.336 135500 0.0036 -
4.352 136000 0.0036 -
4.368 136500 0.0035 -
4.384 137000 0.0036 -
4.4 137500 0.0035 -
4.416 138000 0.0034 -
4.432 138500 0.0034 -
4.448 139000 0.0034 -
4.464 139500 0.0035 -
4.48 140000 0.0035 0.0029
4.496 140500 0.0034 -
4.5120 141000 0.0035 -
4.5280 141500 0.0035 -
4.5440 142000 0.0036 -
4.5600 142500 0.0035 -
4.576 143000 0.0034 -
4.592 143500 0.0034 -
4.608 144000 0.0035 -
4.624 144500 0.0035 -
4.64 145000 0.0036 -
4.656 145500 0.0036 -
4.672 146000 0.0035 -
4.688 146500 0.0035 -
4.704 147000 0.0033 -
4.72 147500 0.0035 -
4.736 148000 0.0035 -
4.752 148500 0.0036 -
4.768 149000 0.0036 -
4.784 149500 0.0035 -
4.8 150000 0.0035 0.0028
4.816 150500 0.0035 -
4.832 151000 0.0035 -
4.848 151500 0.0035 -
4.864 152000 0.0036 -
4.88 152500 0.0036 -
4.896 153000 0.0035 -
4.912 153500 0.0035 -
4.928 154000 0.0035 -
4.944 154500 0.0035 -
4.96 155000 0.0035 -
4.976 155500 0.0035 -
4.992 156000 0.0034 -
5.008 156500 0.0033 -
5.024 157000 0.0032 -
5.04 157500 0.0032 -
5.056 158000 0.0033 -
5.072 158500 0.0032 -
5.088 159000 0.0032 -
5.104 159500 0.0031 -
5.12 160000 0.0032 0.0028
5.136 160500 0.0032 -
5.152 161000 0.0032 -
5.168 161500 0.0033 -
5.184 162000 0.0033 -
5.2 162500 0.0031 -
5.216 163000 0.0033 -
5.232 163500 0.0032 -
5.248 164000 0.0032 -
5.264 164500 0.0032 -
5.28 165000 0.0033 -
5.296 165500 0.0033 -
5.312 166000 0.0031 -
5.328 166500 0.0032 -
5.344 167000 0.0032 -
5.36 167500 0.0033 -
5.376 168000 0.0033 -
5.392 168500 0.0032 -
5.408 169000 0.0032 -
5.424 169500 0.0032 -
5.44 170000 0.0032 0.0027
5.456 170500 0.0031 -
5.4720 171000 0.0031 -
5.4880 171500 0.0032 -
5.504 172000 0.0031 -
5.52 172500 0.0031 -
5.536 173000 0.0032 -
5.552 173500 0.0031 -
5.568 174000 0.0032 -
5.584 174500 0.0032 -
5.6 175000 0.0032 -
5.616 175500 0.0032 -
5.632 176000 0.0032 -
5.648 176500 0.0032 -
5.664 177000 0.0032 -
5.68 177500 0.0032 -
5.696 178000 0.0032 -
5.712 178500 0.0033 -
5.728 179000 0.0032 -
5.744 179500 0.0031 -
5.76 180000 0.0033 0.0027
5.776 180500 0.0033 -
5.792 181000 0.003 -
5.808 181500 0.0032 -
5.824 182000 0.0032 -
5.84 182500 0.0032 -
5.856 183000 0.0032 -
5.872 183500 0.0033 -
5.888 184000 0.0032 -
5.904 184500 0.0032 -
5.92 185000 0.0032 -
5.936 185500 0.0031 -
5.952 186000 0.0031 -
5.968 186500 0.0031 -
5.984 187000 0.0033 -
6.0 187500 0.0031 -
6.016 188000 0.0028 -
6.032 188500 0.0029 -
6.048 189000 0.003 -
6.064 189500 0.003 -
6.08 190000 0.0029 0.0027
6.096 190500 0.0029 -
6.112 191000 0.0029 -
6.128 191500 0.003 -
6.144 192000 0.0029 -
6.16 192500 0.003 -
6.176 193000 0.003 -
6.192 193500 0.0029 -
6.208 194000 0.0029 -
6.224 194500 0.0029 -
6.24 195000 0.003 -
6.256 195500 0.0029 -
6.272 196000 0.0029 -
6.288 196500 0.0029 -
6.304 197000 0.0029 -
6.32 197500 0.003 -
6.336 198000 0.0029 -
6.352 198500 0.0029 -
6.368 199000 0.003 -
6.384 199500 0.0029 -
6.4 200000 0.0029 0.0028
6.416 200500 0.0029 -
6.432 201000 0.0029 -
6.448 201500 0.0031 -
6.464 202000 0.0029 -
6.48 202500 0.003 -
6.496 203000 0.003 -
6.5120 203500 0.003 -
6.5280 204000 0.0029 -
6.5440 204500 0.003 -
6.5600 205000 0.0029 -
6.576 205500 0.0028 -
6.592 206000 0.003 -
6.608 206500 0.0029 -
6.624 207000 0.003 -
6.64 207500 0.003 -
6.656 208000 0.003 -
6.672 208500 0.0029 -
6.688 209000 0.003 -
6.704 209500 0.003 -
6.72 210000 0.0029 0.0027
6.736 210500 0.0029 -
6.752 211000 0.0029 -
6.768 211500 0.0029 -
6.784 212000 0.0029 -
6.8 212500 0.0029 -
6.816 213000 0.003 -
6.832 213500 0.0028 -
6.848 214000 0.003 -
6.864 214500 0.0029 -
6.88 215000 0.0029 -
6.896 215500 0.0029 -
6.912 216000 0.0029 -
6.928 216500 0.0029 -
6.944 217000 0.0028 -
6.96 217500 0.003 -
6.976 218000 0.003 -
6.992 218500 0.0029 -
7.008 219000 0.0028 -
7.024 219500 0.0028 -
7.04 220000 0.0028 0.0027
7.056 220500 0.0027 -
7.072 221000 0.0027 -
7.088 221500 0.0027 -
7.104 222000 0.0026 -
7.12 222500 0.0028 -
7.136 223000 0.0027 -
7.152 223500 0.0028 -
7.168 224000 0.0027 -
7.184 224500 0.0027 -
7.2 225000 0.0028 -
7.216 225500 0.0027 -
7.232 226000 0.0028 -
7.248 226500 0.0027 -
7.264 227000 0.0027 -
7.28 227500 0.0027 -
7.296 228000 0.0027 -
7.312 228500 0.0028 -
7.328 229000 0.0027 -
7.344 229500 0.0028 -
7.36 230000 0.0028 0.0027
7.376 230500 0.0028 -
7.392 231000 0.0028 -
7.408 231500 0.0028 -
7.424 232000 0.0027 -
7.44 232500 0.0027 -
7.456 233000 0.0028 -
7.4720 233500 0.0028 -
7.4880 234000 0.0028 -
7.504 234500 0.0028 -
7.52 235000 0.0028 -
7.536 235500 0.0027 -
7.552 236000 0.0027 -
7.568 236500 0.0028 -
7.584 237000 0.0028 -
7.6 237500 0.0027 -
7.616 238000 0.0028 -
7.632 238500 0.0026 -
7.648 239000 0.0027 -
7.664 239500 0.0027 -
7.68 240000 0.0028 0.0027
7.696 240500 0.0028 -
7.712 241000 0.0027 -
7.728 241500 0.0028 -
7.744 242000 0.0027 -
7.76 242500 0.0027 -
7.776 243000 0.0027 -
7.792 243500 0.0028 -
7.808 244000 0.0027 -
7.824 244500 0.0027 -
7.84 245000 0.0027 -
7.856 245500 0.0029 -
7.872 246000 0.0028 -
7.888 246500 0.0027 -
7.904 247000 0.0026 -
7.92 247500 0.0027 -
7.936 248000 0.0027 -
7.952 248500 0.0027 -
7.968 249000 0.0028 -
7.984 249500 0.0027 -
8.0 250000 0.0028 0.0027

Framework Versions

  • Python: 3.10.16
  • Sentence Transformers: 4.1.0
  • Transformers: 4.51.3
  • PyTorch: 2.6.0+cu118
  • Accelerate: 1.6.0
  • Datasets: 3.5.0
  • Tokenizers: 0.21.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

ContrastiveLoss

@inproceedings{hadsell2006dimensionality,
    author={Hadsell, R. and Chopra, S. and LeCun, Y.},
    booktitle={2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)},
    title={Dimensionality Reduction by Learning an Invariant Mapping},
    year={2006},
    volume={2},
    number={},
    pages={1735-1742},
    doi={10.1109/CVPR.2006.100}
}
Downloads last month
5
Safetensors
Model size
118M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for CloudlessSky/fullname_encoder_v1

Finetuned
(117)
this model