See axolotl config
axolotl version: 0.6.0
adapter: qlora
base_model: unsloth/Llama-3.2-1B-Instruct
bf16: false
dataset_prepared_path: null
datasets:
- path: nickrosh/Evol-Instruct-Code-80k-v1
type: alpaca
debug: null
deepspeed: null
early_stopping_patience: null
evals_per_epoch: null
flash_attention: null
fp16: true
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 1
gradient_checkpointing: true
group_by_length: false
is_llama_derived_model: true
learning_rate: 0.0002
load_in_4bit: true
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 32
lora_target_linear: true
lora_target_modules: null
lr_scheduler: cosine
max_steps: 20
micro_batch_size: 1
model_type: LlamaForCausalLM
num_epochs: 2
optimizer: paged_adamw_32bit
output_dir: /content/qlora-out
pad_to_sequence_len: true
resume_from_checkpoint: null
sample_packing: true
saves_per_epoch: null
sequence_len: 2048
special_tokens:
pad_token: <eos>
strict: false
tf32: false
tokenizer_type: PreTrainedTokenizerFast
train_on_inputs: false
val_set_size: 0.05
wandb_entity: null
wandb_log_model: null
wandb_name: null
wandb_project: null
wandb_watch: null
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
content/qlora-out
This model is a fine-tuned version of unsloth/Llama-3.2-1B-Instruct on the nickrosh/Evol-Instruct-Code-80k-v1 dataset. It achieves the following results on the evaluation set:
- Loss: 3.1616
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- optimizer: Use OptimizerNames.PAGED_ADAMW with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 20
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
0.9897 | 0.0012 | 20 | 3.1616 |
Framework versions
- PEFT 0.14.0
- Transformers 4.48.3
- Pytorch 2.5.1+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- 0
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for Begaunsberg/Llama-3.2-1B-QLoRA-test-dataset
Base model
meta-llama/Llama-3.2-1B-Instruct
Finetuned
unsloth/Llama-3.2-1B-Instruct