BAAI
/

CharmingDog commited on
Commit
8e7f18b
·
1 Parent(s): e299788

update model card

Browse files
Files changed (2) hide show
  1. README.md +75 -194
  2. config.json +4 -1
README.md CHANGED
@@ -1,198 +1,79 @@
1
  ---
 
 
 
2
  license: apache-2.0
 
 
 
 
 
3
  ---
4
 
5
- # Model Card for Model ID
6
-
7
- <!-- Provide a quick summary of what the model is/does. -->
8
-
9
- This modelcard aims to be a base template for new models. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md?plain=1).
10
-
11
- ## Model Details
12
-
13
- ### Model Description
14
-
15
- <!-- Provide a longer summary of what this model is. -->
16
-
17
-
18
-
19
- - **Developed by:** [More Information Needed]
20
- - **Funded by [optional]:** [More Information Needed]
21
- - **Shared by [optional]:** [More Information Needed]
22
- - **Model type:** [More Information Needed]
23
- - **Language(s) (NLP):** [More Information Needed]
24
- - **License:** [More Information Needed]
25
- - **Finetuned from model [optional]:** [More Information Needed]
26
-
27
- ### Model Sources [optional]
28
-
29
- <!-- Provide the basic links for the model. -->
30
-
31
- - **Repository:** [More Information Needed]
32
- - **Paper [optional]:** [More Information Needed]
33
- - **Demo [optional]:** [More Information Needed]
34
-
35
- ## Uses
36
-
37
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
38
-
39
- ### Direct Use
40
-
41
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
42
-
43
- [More Information Needed]
44
-
45
- ### Downstream Use [optional]
46
-
47
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
48
-
49
- [More Information Needed]
50
-
51
- ### Out-of-Scope Use
52
-
53
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
54
-
55
- [More Information Needed]
56
-
57
- ## Bias, Risks, and Limitations
58
-
59
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
60
-
61
- [More Information Needed]
62
-
63
- ### Recommendations
64
-
65
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
66
-
67
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
68
-
69
- ## How to Get Started with the Model
70
-
71
- Use the code below to get started with the model.
72
-
73
- [More Information Needed]
74
-
75
- ## Training Details
76
-
77
- ### Training Data
78
-
79
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
80
-
81
- [More Information Needed]
82
-
83
- ### Training Procedure
84
-
85
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
86
-
87
- #### Preprocessing [optional]
88
-
89
- [More Information Needed]
90
-
91
-
92
- #### Training Hyperparameters
93
-
94
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
95
-
96
- #### Speeds, Sizes, Times [optional]
97
-
98
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
99
-
100
- [More Information Needed]
101
-
102
- ## Evaluation
103
-
104
- <!-- This section describes the evaluation protocols and provides the results. -->
105
-
106
- ### Testing Data, Factors & Metrics
107
-
108
- #### Testing Data
109
-
110
- <!-- This should link to a Dataset Card if possible. -->
111
-
112
- [More Information Needed]
113
-
114
- #### Factors
115
-
116
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
117
-
118
- [More Information Needed]
119
-
120
- #### Metrics
121
-
122
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
123
-
124
- [More Information Needed]
125
-
126
- ### Results
127
-
128
- [More Information Needed]
129
-
130
- #### Summary
131
-
132
-
133
-
134
- ## Model Examination [optional]
135
-
136
- <!-- Relevant interpretability work for the model goes here -->
137
-
138
- [More Information Needed]
139
-
140
- ## Environmental Impact
141
-
142
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
143
-
144
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
145
-
146
- - **Hardware Type:** [More Information Needed]
147
- - **Hours used:** [More Information Needed]
148
- - **Cloud Provider:** [More Information Needed]
149
- - **Compute Region:** [More Information Needed]
150
- - **Carbon Emitted:** [More Information Needed]
151
-
152
- ## Technical Specifications [optional]
153
-
154
- ### Model Architecture and Objective
155
-
156
- [More Information Needed]
157
-
158
- ### Compute Infrastructure
159
-
160
- [More Information Needed]
161
-
162
- #### Hardware
163
-
164
- [More Information Needed]
165
-
166
- #### Software
167
-
168
- [More Information Needed]
169
-
170
- ## Citation [optional]
171
-
172
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
173
-
174
- **BibTeX:**
175
-
176
- [More Information Needed]
177
-
178
- **APA:**
179
-
180
- [More Information Needed]
181
-
182
- ## Glossary [optional]
183
-
184
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
185
-
186
- [More Information Needed]
187
-
188
- ## More Information [optional]
189
-
190
- [More Information Needed]
191
-
192
- ## Model Card Authors [optional]
193
-
194
- [More Information Needed]
195
-
196
- ## Model Card Contact
197
-
198
- [More Information Needed]
 
1
  ---
2
+ language:
3
+ - en
4
+ library_name: transformers
5
  license: apache-2.0
6
+ metrics:
7
+ - accuracy
8
+ tags:
9
+ - multimodal
10
+ pipeline_tag: video-text-to-text
11
  ---
12
 
13
+ # Video-XL-2
14
+ [\[📰 Blog\]](https://unabletousegit.github.io/video-xl2.github.io/) [\[📂 GitHub\]](https://github.com/VectorSpaceLab/Video-XL) [\[📜 Tech Report(comming soon)\]]()
15
+
16
+
17
+ ## 🚀 How to use the model
18
+ ```python
19
+ from transformers import AutoTokenizer, AutoModel, AutoConfig, BitsAndBytesConfig
20
+ import torch
21
+
22
+ # load model
23
+ model_path = '/root/Models/Video-XL-2'
24
+ tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
25
+ device = 'cuda' if torch.cuda.is_available() else 'cpu'
26
+ model = AutoModel.from_pretrained(model_path, trust_remote_code=True, device_map=device,quantization_config=None,attn_implementation="sdpa").to(torch.bfloat16)
27
+
28
+ gen_kwargs = {
29
+ "do_sample": True,
30
+ "temperature": 0.01,
31
+ "top_p": 0.001,
32
+ "num_beams": 1,
33
+ "use_cache": True,
34
+ "max_new_tokens": 256
35
+ }
36
+
37
+ enable_sparse = False # use the sparse pattern or not
38
+ sparse_mode = 'streaming' # streaming or mask
39
+ if enable_sparse:
40
+ model.config.enable_sparse = True
41
+ model.config.sparse_mode = sparse_mode
42
+ block_size_chosed = 4
43
+ prev_blocks_num = 3
44
+ model.config.sparse_config = {'block_size_chosed':block_size_chosed, 'prev_blocks_num':prev_blocks_num}
45
+ else:
46
+ model.config.enable_sparse = False
47
+
48
+ # input data
49
+ video_path = "/asset/demo.mp4"
50
+ question1 = "How many people in the video? (A)3 people (B)6 people. Please only respone the letter"
51
+
52
+ # params
53
+ max_num_frames = 100
54
+ sample_fps = 1 # extract frame at 1fps
55
+ max_sample_fps = 4
56
+
57
+ with torch.inference_mode():
58
+ response = model.chat(video_path, tokenizer, question1, chat_history=None, return_history=False,max_num_frames=max_num_frames, sample_fps=sample_fps, max_sample_fps=max_sample_fps, generation_config=gen_kwargs)
59
+
60
+ print(response)
61
+ ```
62
+
63
+ ## ✏️ Citation
64
+
65
+ ```bibtex
66
+ @article{shu2024video,
67
+ title={Video-XL: Extra-Long Vision Language Model for Hour-Scale Video Understanding},
68
+ author={Shu, Yan and Zhang, Peitian and Liu, Zheng and Qin, Minghao and Zhou, Junjie and Huang, Tiejun and Zhao, Bo},
69
+ journal={arXiv preprint arXiv:2409.14485},
70
+ year={2024}
71
+ }
72
+
73
+ @article{liu2025video,
74
+ title={Video-XL-Pro: Reconstructive Token Compression for Extremely Long Video Understanding},
75
+ author={Liu, Xiangrui and Shu, Yan and Liu, Zheng and Li, Ao and Tian, Yang and Zhao, Bo},
76
+ journal={arXiv preprint arXiv:2503.18478},
77
+ year={2025}
78
+ }
79
+ ```
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
config.json CHANGED
@@ -1,8 +1,11 @@
1
  {
2
- "_name_or_path": "/share/LXRlxr0_0/code/videoxl2/videoxl2/checkpoints/videoxl2_0410",
3
  "architectures": [
4
  "LlavaQwenForCausalLM"
5
  ],
 
 
 
 
6
  "attention_dropout": 0.0,
7
  "bos_token_id": 151643,
8
  "eos_token_id": 151645,
 
1
  {
 
2
  "architectures": [
3
  "LlavaQwenForCausalLM"
4
  ],
5
+ "auto_map": {
6
+ "AutoConfig": "llava_qwen.LlavaQwenConfig",
7
+ "AutoModel": "llava_qwen.LlavaQwenForCausalLM"
8
+ },
9
  "attention_dropout": 0.0,
10
  "bos_token_id": 151643,
11
  "eos_token_id": 151645,