File size: 3,154 Bytes
f0d39c1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 |
---
library_name: peft
license: other
base_model: deepseek-ai/deepseek-coder-1.3b-base
tags:
- generated_from_trainer
model-index:
- name: lemexp-processed-task1_min_symbols_template_small-deepseek-coder-1.3b-base
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# lemexp-processed-task1_min_symbols_template_small-deepseek-coder-1.3b-base
This model is a fine-tuned version of [deepseek-ai/deepseek-coder-1.3b-base](https://huggingface.co/deepseek-ai/deepseek-coder-1.3b-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1407
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- num_epochs: 6
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:------:|:---------------:|
| 0.3044 | 0.2000 | 5030 | 0.2924 |
| 0.2643 | 0.4001 | 10060 | 0.2585 |
| 0.2396 | 0.6001 | 15090 | 0.2310 |
| 0.2277 | 0.8001 | 20120 | 0.2108 |
| 0.2103 | 1.0002 | 25150 | 0.2088 |
| 0.1942 | 1.2002 | 30180 | 0.2031 |
| 0.1846 | 1.4002 | 35210 | 0.1955 |
| 0.1814 | 1.6003 | 40240 | 0.1827 |
| 0.1688 | 1.8003 | 45270 | 0.1789 |
| 0.1772 | 2.0003 | 50300 | 0.1767 |
| 0.143 | 2.2003 | 55330 | 0.1748 |
| 0.1465 | 2.4004 | 60360 | 0.1691 |
| 0.1517 | 2.6004 | 65390 | 0.1702 |
| 0.1533 | 2.8004 | 70420 | 0.1651 |
| 0.1412 | 3.0005 | 75450 | 0.1569 |
| 0.1237 | 3.2005 | 80480 | 0.1581 |
| 0.131 | 3.4005 | 85510 | 0.1561 |
| 0.1221 | 3.6006 | 90540 | 0.1486 |
| 0.1161 | 3.8006 | 95570 | 0.1464 |
| 0.1165 | 4.0006 | 100600 | 0.1413 |
| 0.0994 | 4.2007 | 105630 | 0.1458 |
| 0.1113 | 4.4007 | 110660 | 0.1483 |
| 0.0996 | 4.6007 | 115690 | 0.1426 |
| 0.1116 | 4.8008 | 120720 | 0.1392 |
| 0.1004 | 5.0008 | 125750 | 0.1380 |
| 0.0814 | 5.2008 | 130780 | 0.1418 |
| 0.086 | 5.4009 | 135810 | 0.1406 |
| 0.0731 | 5.6009 | 140840 | 0.1416 |
| 0.0807 | 5.8009 | 145870 | 0.1407 |
### Framework versions
- PEFT 0.14.0
- Transformers 4.47.0
- Pytorch 2.5.1+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0 |