--- library_name: transformers base_model: huggingface/CodeBERTa-small-v1 tags: - generated_from_trainer metrics: - f1 - accuracy - precision - recall model-index: - name: CodeBERTa-small-v1-sourcecode-detection-clf results: [] --- # CodeBERTa-small-v1-sourcecode-detection-clf This model is a fine-tuned version of [huggingface/CodeBERTa-small-v1](https://huggingface.co/huggingface/CodeBERTa-small-v1) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0041 - F1: 1.0 - Accuracy: 1.0 - Precision: 1.0 - Recall: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 320 - eval_batch_size: 320 - seed: 2024 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - training_steps: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Accuracy | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:------:|:--------:|:---------:|:------:| | No log | 0 | 0 | 0.6985 | 0.3223 | 0.49 | 0.2401 | 0.49 | | 0.0001 | 12.5 | 50 | 0.0044 | 1.0 | 1.0 | 1.0 | 1.0 | | 0.0001 | 25.0 | 100 | 0.0041 | 1.0 | 1.0 | 1.0 | 1.0 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.5.1 - Datasets 3.1.0 - Tokenizers 0.20.3