Update processing_gemma3_omni.py
Browse files- processing_gemma3_omni.py +214 -265
processing_gemma3_omni.py
CHANGED
@@ -1,9 +1,9 @@
|
|
1 |
import re
|
2 |
-
from typing import List, Optional, Union, Dict, Any
|
3 |
|
4 |
import math
|
5 |
import numpy as np
|
6 |
-
import scipy.signal
|
7 |
import torch
|
8 |
from torch.nn.utils.rnn import pad_sequence
|
9 |
|
@@ -15,28 +15,31 @@ AudioInput = Union[np.ndarray, List[float], Tuple[np.ndarray, int]]
|
|
15 |
|
16 |
from transformers.feature_extraction_sequence_utils import SequenceFeatureExtractor
|
17 |
from transformers.feature_extraction_utils import BatchFeature
|
18 |
-
|
19 |
-
from transformers.processing_utils import ProcessorMixin, \
|
20 |
-
ProcessingKwargs # Removed ImagesKwargs, Unpack for simplicity as they are not fully defined here
|
21 |
from transformers.utils import TensorType, to_py_obj, logging
|
|
|
|
|
22 |
|
23 |
-
|
|
|
24 |
DEFAULT_SAMPLING_RATE = 16000
|
25 |
DEFAULT_N_FFT = 512
|
26 |
-
DEFAULT_WIN_LENGTH = 400
|
27 |
-
DEFAULT_HOP_LENGTH = 160
|
28 |
DEFAULT_N_MELS = 80
|
29 |
-
DEFAULT_COMPRESSION_RATE = 4
|
30 |
-
DEFAULT_QFORMER_RATE = 2
|
31 |
-
DEFAULT_FEAT_STRIDE = 4
|
32 |
-
IMAGE_TOKEN_PATTERN = r"<\|image_\d+\|>"
|
33 |
-
AUDIO_TOKEN_PATTERN = r"<\|audio_\d+\|>"
|
34 |
-
DEFAULT_MAX_LENGTH = 16384
|
35 |
LOG_MEL_CLIP_EPSILON = 1e-5
|
36 |
|
37 |
logger = logging.get_logger(__name__)
|
38 |
|
39 |
|
|
|
|
|
40 |
def create_mel_filterbank(sampling_rate: int, n_fft: int, n_mels: int, fmin: float = 0.0,
|
41 |
fmax: Optional[float] = None) -> np.ndarray:
|
42 |
"""Create Mel filterbank for audio processing."""
|
@@ -45,79 +48,66 @@ def create_mel_filterbank(sampling_rate: int, n_fft: int, n_mels: int, fmin: flo
|
|
45 |
if fmin >= fmax:
|
46 |
raise ValueError(f"fmin ({fmin}) must be smaller than fmax ({fmax}).")
|
47 |
|
48 |
-
def hz_to_mel(f: float) -> float:
|
49 |
return 2595.0 * math.log10(1 + f / 700.0)
|
50 |
|
51 |
def mel_to_hz(mel: float) -> float:
|
52 |
-
return 700.0 * (10
|
53 |
|
54 |
mel_points = np.linspace(hz_to_mel(fmin), hz_to_mel(fmax), n_mels + 2)
|
55 |
freq_points = mel_to_hz(mel_points)
|
56 |
-
|
57 |
-
# Ensure freq_points are within the Nyquist limit
|
58 |
freq_points = np.clip(freq_points, 0, sampling_rate / 2.0)
|
59 |
-
|
60 |
-
|
61 |
-
# bins = np.searchsorted(fftfreqs, freq_points) # More robust way to find bins
|
62 |
-
bins = np.floor((n_fft / 2.0) * freq_points / (sampling_rate / 2.0)).astype(int) # Simplified from librosa
|
63 |
-
bins = np.clip(bins, 0, n_fft // 2) # Max index for rfft output (n_fft//2 + 1 bins, so max index is n_fft//2)
|
64 |
|
65 |
filterbank = np.zeros((n_mels, n_fft // 2 + 1), dtype=np.float32)
|
66 |
-
for m in range(n_mels):
|
67 |
left, center, right = bins[m], bins[m + 1], bins[m + 2]
|
68 |
-
|
|
|
69 |
if center > left:
|
70 |
-
filterbank[m, left:center
|
71 |
-
center - left) # Inclusive center for peak
|
72 |
if right > center:
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
# Ramp down
|
84 |
-
idxs_down = np.arange(center, right + 1) # include center
|
85 |
-
filterbank[m, idxs_down] = (right - idxs_down) / (right - center)
|
86 |
-
elif center > left: # only ramp up (right part is flat or non-existent)
|
87 |
-
idxs_up = np.arange(left, center + 1)
|
88 |
-
filterbank[m, idxs_up] = (idxs_up - left) / (center - left)
|
89 |
-
elif center < right: # only ramp down (left part is flat or non-existent)
|
90 |
-
idxs_down = np.arange(center, right + 1)
|
91 |
-
filterbank[m, idxs_down] = (right - idxs_down) / (right - center)
|
92 |
|
93 |
-
return filterbank
|
94 |
|
|
|
95 |
|
|
|
|
|
96 |
class Gemma3AudioFeatureExtractor(SequenceFeatureExtractor):
|
97 |
-
model_input_names = ["audio_values", "audio_attention_mask"]
|
98 |
|
99 |
def __init__(
|
100 |
self,
|
101 |
compression_rate: int = DEFAULT_COMPRESSION_RATE,
|
102 |
qformer_rate: int = DEFAULT_QFORMER_RATE,
|
103 |
feat_stride: int = DEFAULT_FEAT_STRIDE,
|
104 |
-
sampling_rate: int = DEFAULT_SAMPLING_RATE,
|
105 |
n_fft: int = DEFAULT_N_FFT,
|
106 |
-
win_length: Optional[int] = None,
|
107 |
-
hop_length: Optional[int] = None,
|
108 |
n_mels: int = DEFAULT_N_MELS,
|
109 |
f_min: float = 0.0,
|
110 |
f_max: Optional[float] = None,
|
111 |
-
padding_value: float = 0.0,
|
112 |
**kwargs
|
113 |
):
|
114 |
-
# feature_size is the number of features per frame (n_mels)
|
115 |
super().__init__(feature_size=n_mels, sampling_rate=sampling_rate, padding_value=padding_value, **kwargs)
|
116 |
|
117 |
self.compression_rate = compression_rate
|
118 |
self.qformer_rate = qformer_rate
|
119 |
-
self.feat_stride = feat_stride
|
120 |
-
|
121 |
self.n_fft = n_fft
|
122 |
self.win_length = win_length if win_length is not None else n_fft
|
123 |
self.hop_length = hop_length if hop_length is not None else self.win_length // 4
|
@@ -130,26 +120,24 @@ class Gemma3AudioFeatureExtractor(SequenceFeatureExtractor):
|
|
130 |
f"win_length ({self.win_length}) is greater than n_fft ({self.n_fft}). "
|
131 |
f"For FFT computation, the window will effectively be truncated or the signal zero-padded to n_fft length."
|
132 |
)
|
133 |
-
self.window = scipy.signal.get_window("hann", self.win_length).astype(np.float32)
|
134 |
self.mel_filterbank = create_mel_filterbank(
|
135 |
self.sampling_rate, self.n_fft, self.n_mels, fmin=self.f_min, fmax=self.f_max
|
136 |
-
).T
|
137 |
|
138 |
def __call__(
|
139 |
self,
|
140 |
audios: Union[AudioInput, List[AudioInput]],
|
141 |
-
sampling_rate: Optional[int] = None,
|
142 |
return_tensors: Union[TensorType, str, None] = TensorType.PYTORCH
|
143 |
) -> BatchFeature:
|
144 |
-
|
145 |
if not isinstance(audios, list):
|
146 |
audios = [audios]
|
147 |
|
148 |
processed_mel_spectrograms: List[torch.Tensor] = []
|
149 |
actual_mel_lengths: List[int] = []
|
150 |
-
|
151 |
-
# Optional downstream calculation values, kept if needed by other parts of Gemma3OmniProcessor
|
152 |
-
downstream_sizes_for_token_calc: List[torch.Tensor] = []
|
153 |
downstream_frames_scaled_for_token_calc: List[int] = []
|
154 |
|
155 |
for audio_input_item in audios:
|
@@ -166,73 +154,58 @@ class Gemma3AudioFeatureExtractor(SequenceFeatureExtractor):
|
|
166 |
"sampling_rate must be provided if audio inputs are raw numpy arrays or lists."
|
167 |
)
|
168 |
source_sr = sampling_rate
|
169 |
-
else:
|
170 |
raise TypeError(
|
171 |
f"Unsupported audio input type: {type(audio_input_item)}. "
|
172 |
"This extractor expects np.ndarray, list of floats, or Tuple[np.ndarray, int indicating SR]."
|
173 |
)
|
174 |
|
175 |
processed_wav = self._preprocess_audio(current_wav_array, source_sr)
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
feature_tensor = torch.from_numpy(mel_spectrogram) # Already float32 from _compute_log_mel_spectrogram
|
180 |
processed_mel_spectrograms.append(feature_tensor)
|
181 |
-
actual_mel_lengths.append(feature_tensor.shape[0])
|
182 |
|
183 |
-
# These calculations seem related to determining the number of special tokens in the prompt
|
184 |
downstream_sizes_for_token_calc.append(torch.tensor(self._calculate_embed_length(feature_tensor.shape[0])))
|
185 |
downstream_frames_scaled_for_token_calc.append(feature_tensor.shape[0] * self.feat_stride)
|
186 |
|
187 |
-
# Pad the mel spectrograms
|
188 |
-
# audio_values will have shape (Batch, Max_frame_count, n_mels)
|
189 |
audio_values = pad_sequence(processed_mel_spectrograms, batch_first=True, padding_value=self.padding_value)
|
190 |
-
|
191 |
-
# Create attention mask corresponding to audio_values
|
192 |
-
max_mel_len = audio_values.shape[1] # Max_frame_count across the batch
|
193 |
lengths_tensor = torch.tensor(actual_mel_lengths, dtype=torch.long)
|
194 |
-
|
195 |
-
|
196 |
-
-1) < lengths_tensor.unsqueeze(1)
|
197 |
-
|
198 |
output_data = {
|
199 |
-
"audio_values": audio_values,
|
200 |
-
"audio_attention_mask": audio_attention_mask
|
201 |
}
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
# if downstream_frames_scaled_for_token_calc: # Example if needed
|
207 |
-
# output_data["audio_token_calc_frames_scaled"] = torch.tensor(downstream_frames_scaled_for_token_calc)
|
208 |
-
|
209 |
return BatchFeature(data=output_data, tensor_type=return_tensors)
|
210 |
|
211 |
def _preprocess_audio(self, wav: np.ndarray, source_sr: int) -> np.ndarray:
|
212 |
if wav.dtype not in [np.float32, np.float64]:
|
213 |
-
# Assuming int audio needs normalization to [-1, 1]
|
214 |
if np.issubdtype(wav.dtype, np.integer):
|
215 |
max_val = np.iinfo(wav.dtype).max
|
216 |
wav = wav.astype(np.float32) / max_val
|
217 |
-
else:
|
218 |
wav = wav.astype(np.float32)
|
219 |
-
|
220 |
if wav.ndim > 1:
|
221 |
-
wav = wav.mean(axis=0)
|
222 |
-
|
223 |
if source_sr != self.sampling_rate:
|
224 |
-
# Using scipy.signal.resample_poly for potentially higher quality resampling
|
225 |
-
# It requires integer up/down factors.
|
226 |
gcd = math.gcd(self.sampling_rate, source_sr)
|
227 |
up_factor = self.sampling_rate // gcd
|
228 |
down_factor = source_sr // gcd
|
229 |
-
if up_factor != down_factor:
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
# Peak normalization
|
234 |
norm_factor = np.abs(wav).max()
|
235 |
-
if norm_factor > 1e-9:
|
236 |
wav = wav / norm_factor
|
237 |
return wav
|
238 |
|
@@ -241,12 +214,9 @@ class Gemma3AudioFeatureExtractor(SequenceFeatureExtractor):
|
|
241 |
padding = self.win_length - len(wav)
|
242 |
wav = np.pad(wav, (0, padding), mode='constant', constant_values=0.0)
|
243 |
|
244 |
-
# Using librosa-like STFT parameters where n_fft, hop_length, win_length are explicit
|
245 |
-
# Manual framing and windowing:
|
246 |
num_frames = 1 + (len(wav) - self.win_length) // self.hop_length
|
247 |
if num_frames <= 0:
|
248 |
-
logger.warning(
|
249 |
-
f"Audio of length {len(wav)} is too short to produce frames with win_length {self.win_length} and hop_length {self.hop_length}. Returning empty mel spectrogram.")
|
250 |
return np.zeros((0, self.n_mels), dtype=np.float32)
|
251 |
|
252 |
frames = np.lib.stride_tricks.as_strided(
|
@@ -255,153 +225,144 @@ class Gemma3AudioFeatureExtractor(SequenceFeatureExtractor):
|
|
255 |
strides=(wav.strides[0] * self.hop_length, wav.strides[0]),
|
256 |
writeable=False
|
257 |
)
|
258 |
-
|
259 |
windowed_frames = frames * self.window
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
mel_spectrogram = np.dot(powers, self.mel_filterbank) # Shape (num_frames, n_mels)
|
265 |
-
|
266 |
mel_spectrogram = np.clip(mel_spectrogram, LOG_MEL_CLIP_EPSILON, None)
|
267 |
log_mel_spectrogram = np.log(mel_spectrogram)
|
268 |
-
|
269 |
return log_mel_spectrogram.astype(np.float32)
|
270 |
|
271 |
def _calculate_embed_length(self, frame_count: int) -> int:
|
272 |
-
# This calculation is likely for determining the number of special tokens
|
273 |
-
# to insert in the text prompt, based on the audio length.
|
274 |
compressed = math.ceil(frame_count / self.compression_rate)
|
275 |
return math.ceil(compressed / self.qformer_rate)
|
276 |
|
277 |
-
|
278 |
-
# --- Gemma3ProcessorKwargs and Gemma3ImagesKwargs would be defined here if needed ---
|
279 |
-
# For this fix, focusing on Gemma3AudioFeatureExtractor and Gemma3OmniProcessor interactions
|
280 |
-
class Gemma3DummyProcessorKwargs(ProcessingKwargs, total=False): # Dummy for testing
|
281 |
images_kwargs: Dict[str, Any]
|
282 |
audio_kwargs: Dict[str, Any]
|
283 |
-
text_kwargs: Dict[str, Any]
|
284 |
_defaults = {
|
285 |
"text_kwargs": {"padding": False, "truncation": False, "max_length": DEFAULT_MAX_LENGTH},
|
286 |
"images_kwargs": {},
|
287 |
"audio_kwargs": {}
|
288 |
}
|
289 |
|
290 |
-
|
291 |
class Gemma3OmniProcessor(ProcessorMixin):
|
292 |
attributes = ["image_processor", "audio_processor", "tokenizer"]
|
293 |
-
# Define
|
294 |
-
#
|
295 |
-
#
|
296 |
-
|
297 |
|
298 |
-
#
|
299 |
-
|
300 |
|
301 |
def __init__(
|
302 |
self,
|
303 |
-
tokenizer,
|
304 |
audio_processor: Optional[Union[Gemma3AudioFeatureExtractor, Dict]] = None,
|
305 |
-
image_processor=None,
|
306 |
chat_template=None,
|
307 |
-
image_seq_length: int = 256,
|
308 |
-
|
309 |
-
audio_prompt_compression_rate: int = 8,
|
310 |
audio_prompt_qformer_rate: int = 1,
|
311 |
audio_prompt_feat_stride: int = 1,
|
312 |
-
audio_placeholder_token: str = "<|audio_placeholder|>",
|
313 |
-
audio_soft_token_str: str = "<audio_soft_token>",
|
314 |
**kwargs
|
315 |
):
|
|
|
316 |
if audio_processor is None:
|
317 |
-
logger.info("Initializing Gemma3AudioFeatureExtractor with default parameters.")
|
318 |
audio_processor = Gemma3AudioFeatureExtractor()
|
319 |
elif isinstance(audio_processor, Dict):
|
320 |
audio_processor = Gemma3AudioFeatureExtractor(**audio_processor)
|
321 |
-
elif not isinstance(audio_processor, Gemma3AudioFeatureExtractor):
|
322 |
-
raise TypeError(
|
323 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
324 |
|
325 |
-
# Ensure tokenizer is provided and instantiated
|
326 |
-
if tokenizer is None: # This check might be redundant if from_pretrained handles it
|
327 |
-
raise ValueError("A tokenizer must be provided.")
|
328 |
-
# if isinstance(tokenizer, str): # Basic loading, usually from_pretrained handles complex cases
|
329 |
-
# tokenizer = AutoTokenizer.from_pretrained(tokenizer)
|
330 |
|
331 |
super().__init__(
|
332 |
image_processor=image_processor,
|
333 |
audio_processor=audio_processor,
|
334 |
tokenizer=tokenizer,
|
335 |
chat_template=chat_template,
|
336 |
-
**kwargs
|
337 |
)
|
338 |
-
|
339 |
self.image_seq_length = image_seq_length
|
340 |
-
|
341 |
-
self.
|
342 |
-
|
343 |
-
self.
|
344 |
-
self.image_token = getattr(tokenizer, "image_token", "<|image|>")
|
345 |
-
self.eoi_token = getattr(tokenizer, "eoi_token", "") # End of image, can be empty
|
346 |
|
347 |
self.audio_placeholder_token = audio_placeholder_token
|
348 |
self.audio_soft_token_str = audio_soft_token_str
|
349 |
-
|
350 |
-
# Get ID for the audio soft token string; it must exist in the tokenizer
|
351 |
self.audio_soft_token_id = self.tokenizer.convert_tokens_to_ids(self.audio_soft_token_str)
|
352 |
-
if self.audio_soft_token_id == self.tokenizer.unk_token_id:
|
353 |
-
|
354 |
-
f"The audio soft token string '{self.audio_soft_token_str}' maps to UNK token. "
|
355 |
"Ensure it is added to the tokenizer's vocabulary as a special token."
|
356 |
)
|
357 |
-
# User's original expected ID, for reference or potential validation
|
358 |
-
# self.expected_audio_token_id = 262143
|
359 |
-
# if self.audio_soft_token_id != self.expected_audio_token_id:
|
360 |
-
# logger.warning(f"Assigned ID {self.audio_soft_token_id} for '{self.audio_soft_token_str}' does not match expected ID {self.expected_audio_token_id}.")
|
361 |
|
362 |
self.full_image_sequence_str = f"\n\n{self.boi_token}{''.join([self.image_token] * self.image_seq_length)}{self.eoi_token}\n\n"
|
363 |
|
364 |
-
# Store rates for calculating number of audio soft tokens for the prompt
|
365 |
self.audio_prompt_compression_rate = audio_prompt_compression_rate
|
366 |
self.audio_prompt_qformer_rate = audio_prompt_qformer_rate
|
367 |
self.audio_prompt_feat_stride = audio_prompt_feat_stride
|
368 |
|
369 |
-
|
370 |
-
|
371 |
-
# This method was complex in user code, simplifying slightly for clarity
|
372 |
final_kwargs = {}
|
373 |
# Initialize with _defaults from the Kwargs class
|
374 |
-
|
|
|
|
|
375 |
final_kwargs[modality_key] = default_modality_kwargs.copy()
|
376 |
|
377 |
# Override with tokenizer's init_kwargs if they exist for a given key
|
378 |
for modality_key, modality_dict in final_kwargs.items():
|
379 |
-
for key in list(modality_dict.keys()):
|
380 |
if key in tokenizer_init_kwargs:
|
381 |
modality_dict[key] = tokenizer_init_kwargs[key]
|
382 |
-
|
383 |
-
# Override with kwargs passed directly to __call__
|
384 |
-
for
|
385 |
-
if
|
386 |
-
final_kwargs[
|
387 |
-
|
388 |
-
|
389 |
-
|
390 |
-
|
391 |
-
# Specific handling for text_kwargs
|
392 |
-
if "text_kwargs" in final_kwargs:
|
393 |
-
|
394 |
-
|
395 |
-
|
396 |
-
|
397 |
-
else: # Ensure text_kwargs exists
|
398 |
-
final_kwargs["text_kwargs"] = {"padding": False, "truncation": False, "max_length": DEFAULT_MAX_LENGTH}
|
399 |
-
|
400 |
return final_kwargs
|
401 |
|
402 |
def _compute_audio_prompt_token_count(self, actual_mel_frames_count: int) -> int:
|
403 |
-
"""Calculates how many <audio_soft_token> to insert in the text prompt."""
|
404 |
-
# Uses parameters specific to this processor for prompt engineering
|
405 |
scaled_frames = actual_mel_frames_count * self.audio_prompt_feat_stride
|
406 |
compressed_once = math.ceil(scaled_frames / self.audio_prompt_compression_rate)
|
407 |
compressed_twice = math.ceil(compressed_once / self.audio_prompt_qformer_rate)
|
@@ -410,118 +371,109 @@ class Gemma3OmniProcessor(ProcessorMixin):
|
|
410 |
def __call__(
|
411 |
self,
|
412 |
text: Union[str, List[str]] = None,
|
413 |
-
images: Optional[Any] = None,
|
414 |
audios: Optional[Union[AudioInput, List[AudioInput]]] = None,
|
415 |
-
sampling_rate: Optional[int] = None,
|
416 |
-
return_tensors: Optional[Union[str, TensorType]] = None,
|
417 |
-
**kwargs: Any
|
418 |
) -> BatchFeature:
|
419 |
-
|
420 |
if text is None and images is None and audios is None:
|
421 |
raise ValueError("Provide at least one of `text`, `images`, or `audios`.")
|
422 |
|
423 |
-
# Determine final return_tensors
|
424 |
-
#
|
425 |
-
|
426 |
-
|
427 |
-
|
428 |
-
final_rt = TensorType.PYTORCH # Default
|
429 |
-
if return_tensors is not None:
|
430 |
-
final_rt = return_tensors
|
431 |
-
elif _rt_from_text_kwargs is not None:
|
432 |
-
final_rt = _rt_from_text_kwargs
|
433 |
-
|
434 |
-
# Get all kwargs merged (text_kwargs, images_kwargs, audio_kwargs)
|
435 |
-
# Using Gemma3DummyProcessorKwargs as the source of _defaults structure
|
436 |
-
merged_kwargs = self._merge_kwargs(
|
437 |
-
Gemma3DummyProcessorKwargs,
|
438 |
self.tokenizer.init_kwargs if hasattr(self.tokenizer, 'init_kwargs') else {},
|
439 |
-
**kwargs
|
440 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
441 |
|
442 |
-
# Ensure text is a list of strings
|
443 |
if text is None:
|
444 |
num_samples = 0
|
445 |
if images is not None:
|
446 |
-
|
447 |
-
num_samples = len(
|
448 |
elif audios is not None:
|
449 |
-
|
450 |
-
|
451 |
-
|
|
|
452 |
if isinstance(text, str):
|
453 |
text = [text]
|
454 |
if not (isinstance(text, list) and all(isinstance(t, str) for t in text)):
|
455 |
raise ValueError("Input `text` must be a string or a list of strings.")
|
456 |
|
457 |
-
|
458 |
-
image_features = {}
|
459 |
if images is not None and self.image_processor is not None:
|
460 |
logger.info("Processing images...")
|
461 |
-
#
|
462 |
-
#
|
463 |
-
#
|
464 |
-
|
465 |
-
|
466 |
-
|
467 |
-
|
468 |
-
audio_features = {}
|
469 |
if audios is not None and self.audio_processor is not None:
|
470 |
logger.info("Processing audio...")
|
471 |
-
audio_call_kwargs =
|
472 |
-
if sampling_rate:
|
473 |
-
|
|
|
|
|
|
|
|
|
474 |
|
475 |
-
# Get dict of numpy arrays/lists first from feature_extractor
|
476 |
-
audio_features_np = self.audio_processor(audios=audios, return_tensors=None, **audio_call_kwargs)
|
477 |
-
audio_features = audio_features_np # Store the dict
|
478 |
-
|
479 |
-
# Modify text to include audio soft tokens
|
480 |
new_text_with_audio = []
|
481 |
-
# audio_attention_mask
|
482 |
-
audio_sample_mel_lengths =
|
483 |
-
axis=-1) # Get actual mel frames per sample
|
484 |
|
485 |
for i, prompt in enumerate(text):
|
486 |
-
num_soft_tokens = self._compute_audio_prompt_token_count(
|
487 |
audio_token_sequence_str = self.audio_soft_token_str * num_soft_tokens
|
488 |
-
|
489 |
if self.audio_placeholder_token in prompt:
|
490 |
prompt = prompt.replace(self.audio_placeholder_token, audio_token_sequence_str, 1)
|
491 |
-
else:
|
492 |
-
prompt += audio_token_sequence_str
|
493 |
new_text_with_audio.append(prompt)
|
494 |
text = new_text_with_audio
|
495 |
-
|
496 |
-
# --- Text Tokenization ---
|
497 |
logger.info("Tokenizing text...")
|
498 |
-
text_call_kwargs =
|
499 |
-
|
500 |
-
text_features = self.tokenizer(text, return_tensors=None, **text_call_kwargs)
|
501 |
|
502 |
-
|
503 |
-
|
504 |
-
|
505 |
-
|
|
|
|
|
506 |
|
507 |
token_type_ids_list = []
|
508 |
for ids_sample in input_ids_list:
|
509 |
-
types = [0] * len(ids_sample)
|
510 |
for j, token_id in enumerate(ids_sample):
|
511 |
if self.image_token_id is not None and token_id == self.image_token_id:
|
512 |
-
types[j] = 1
|
513 |
-
elif token_id == self.audio_soft_token_id:
|
514 |
-
types[j] = 2
|
515 |
token_type_ids_list.append(types)
|
516 |
-
|
517 |
-
|
518 |
-
|
519 |
-
|
520 |
-
|
521 |
-
|
522 |
-
|
523 |
-
|
524 |
-
|
525 |
return BatchFeature(data=combined_features, tensor_type=final_rt)
|
526 |
|
527 |
def batch_decode(self, *args, **kwargs):
|
@@ -532,14 +484,11 @@ class Gemma3OmniProcessor(ProcessorMixin):
|
|
532 |
|
533 |
@property
|
534 |
def model_input_names(self) -> List[str]:
|
535 |
-
"""
|
536 |
-
Defines the expected inputs for the model. Combines tokenizer, image_processor, and audio_processor inputs.
|
537 |
-
"""
|
538 |
input_names = set(self.tokenizer.model_input_names + ["token_type_ids"])
|
539 |
if self.image_processor is not None:
|
540 |
input_names.update(self.image_processor.model_input_names)
|
541 |
if self.audio_processor is not None:
|
542 |
-
# Gemma3AudioFeatureExtractor
|
543 |
-
|
544 |
-
|
545 |
return list(input_names)
|
|
|
1 |
import re
|
2 |
+
from typing import List, Optional, Union, Dict, Any
|
3 |
|
4 |
import math
|
5 |
import numpy as np
|
6 |
+
import scipy.signal
|
7 |
import torch
|
8 |
from torch.nn.utils.rnn import pad_sequence
|
9 |
|
|
|
15 |
|
16 |
from transformers.feature_extraction_sequence_utils import SequenceFeatureExtractor
|
17 |
from transformers.feature_extraction_utils import BatchFeature
|
18 |
+
from transformers.processing_utils import ProcessorMixin, ProcessingKwargs
|
|
|
|
|
19 |
from transformers.utils import TensorType, to_py_obj, logging
|
20 |
+
# For AutoImageProcessor, AutoTokenizer if needed for default loading
|
21 |
+
from transformers import AutoImageProcessor, AutoTokenizer
|
22 |
|
23 |
+
|
24 |
+
# Constants (as defined before)
|
25 |
DEFAULT_SAMPLING_RATE = 16000
|
26 |
DEFAULT_N_FFT = 512
|
27 |
+
DEFAULT_WIN_LENGTH = 400 # Will be n_fft if None in __init__
|
28 |
+
DEFAULT_HOP_LENGTH = 160 # Will be win_length // 4 if None in __init__
|
29 |
DEFAULT_N_MELS = 80
|
30 |
+
DEFAULT_COMPRESSION_RATE = 4
|
31 |
+
DEFAULT_QFORMER_RATE = 2
|
32 |
+
DEFAULT_FEAT_STRIDE = 4
|
33 |
+
IMAGE_TOKEN_PATTERN = r"<\|image_\d+\|>"
|
34 |
+
AUDIO_TOKEN_PATTERN = r"<\|audio_\d+\|>"
|
35 |
+
DEFAULT_MAX_LENGTH = 16384
|
36 |
LOG_MEL_CLIP_EPSILON = 1e-5
|
37 |
|
38 |
logger = logging.get_logger(__name__)
|
39 |
|
40 |
|
41 |
+
# create_mel_filterbank function (assuming it's correctly defined from previous response)
|
42 |
+
# ... (create_mel_filterbank function from the previous corrected response) ...
|
43 |
def create_mel_filterbank(sampling_rate: int, n_fft: int, n_mels: int, fmin: float = 0.0,
|
44 |
fmax: Optional[float] = None) -> np.ndarray:
|
45 |
"""Create Mel filterbank for audio processing."""
|
|
|
48 |
if fmin >= fmax:
|
49 |
raise ValueError(f"fmin ({fmin}) must be smaller than fmax ({fmax}).")
|
50 |
|
51 |
+
def hz_to_mel(f: float) -> float: # Using HTK formula (as in librosa default)
|
52 |
return 2595.0 * math.log10(1 + f / 700.0)
|
53 |
|
54 |
def mel_to_hz(mel: float) -> float:
|
55 |
+
return 700.0 * (10**(mel / 2595.0) - 1)
|
56 |
|
57 |
mel_points = np.linspace(hz_to_mel(fmin), hz_to_mel(fmax), n_mels + 2)
|
58 |
freq_points = mel_to_hz(mel_points)
|
59 |
+
|
|
|
60 |
freq_points = np.clip(freq_points, 0, sampling_rate / 2.0)
|
61 |
+
bins = np.floor((n_fft / 2.0) * freq_points / (sampling_rate / 2.0)).astype(int)
|
62 |
+
bins = np.clip(bins, 0, n_fft // 2)
|
|
|
|
|
|
|
63 |
|
64 |
filterbank = np.zeros((n_mels, n_fft // 2 + 1), dtype=np.float32)
|
65 |
+
for m in range(n_mels):
|
66 |
left, center, right = bins[m], bins[m + 1], bins[m + 2]
|
67 |
+
|
68 |
+
# Simplified triangle creation logic (more robust versions exist in libraries like librosa)
|
69 |
if center > left:
|
70 |
+
filterbank[m, left:center+1] = (np.arange(left, center + 1) - left) / (center - left)
|
|
|
71 |
if right > center:
|
72 |
+
filterbank[m, center:right+1] = (right - np.arange(center, right + 1)) / (right - center)
|
73 |
+
# Ensure peak is 1 if multiple points coincide at center (can happen with narrow filters/low resolution)
|
74 |
+
if left <= center <= right and filterbank[m,center] < 1.0 and (center > left or center < right) : #check if it's a valid point for a peak
|
75 |
+
# if filterbank[m,center] is not properly set to 1 by slopes (e.g. left==center or right==center)
|
76 |
+
filterbank[m,center] = 1.0
|
77 |
+
if left == center and right > center : # only falling slope
|
78 |
+
# Ensure it doesn't double-dip if already set
|
79 |
+
pass
|
80 |
+
elif right == center and left < center: # only rising slope
|
81 |
+
pass
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
82 |
|
|
|
83 |
|
84 |
+
return filterbank
|
85 |
|
86 |
+
# Gemma3AudioFeatureExtractor class (assuming it's correctly defined from previous response)
|
87 |
+
# ... (Gemma3AudioFeatureExtractor class from the previous corrected response) ...
|
88 |
class Gemma3AudioFeatureExtractor(SequenceFeatureExtractor):
|
89 |
+
model_input_names = ["audio_values", "audio_attention_mask"]
|
90 |
|
91 |
def __init__(
|
92 |
self,
|
93 |
compression_rate: int = DEFAULT_COMPRESSION_RATE,
|
94 |
qformer_rate: int = DEFAULT_QFORMER_RATE,
|
95 |
feat_stride: int = DEFAULT_FEAT_STRIDE,
|
96 |
+
sampling_rate: int = DEFAULT_SAMPLING_RATE,
|
97 |
n_fft: int = DEFAULT_N_FFT,
|
98 |
+
win_length: Optional[int] = None,
|
99 |
+
hop_length: Optional[int] = None,
|
100 |
n_mels: int = DEFAULT_N_MELS,
|
101 |
f_min: float = 0.0,
|
102 |
f_max: Optional[float] = None,
|
103 |
+
padding_value: float = 0.0,
|
104 |
**kwargs
|
105 |
):
|
|
|
106 |
super().__init__(feature_size=n_mels, sampling_rate=sampling_rate, padding_value=padding_value, **kwargs)
|
107 |
|
108 |
self.compression_rate = compression_rate
|
109 |
self.qformer_rate = qformer_rate
|
110 |
+
self.feat_stride = feat_stride
|
|
|
111 |
self.n_fft = n_fft
|
112 |
self.win_length = win_length if win_length is not None else n_fft
|
113 |
self.hop_length = hop_length if hop_length is not None else self.win_length // 4
|
|
|
120 |
f"win_length ({self.win_length}) is greater than n_fft ({self.n_fft}). "
|
121 |
f"For FFT computation, the window will effectively be truncated or the signal zero-padded to n_fft length."
|
122 |
)
|
123 |
+
self.window = scipy.signal.get_window("hann", self.win_length).astype(np.float32)
|
124 |
self.mel_filterbank = create_mel_filterbank(
|
125 |
self.sampling_rate, self.n_fft, self.n_mels, fmin=self.f_min, fmax=self.f_max
|
126 |
+
).T
|
127 |
|
128 |
def __call__(
|
129 |
self,
|
130 |
audios: Union[AudioInput, List[AudioInput]],
|
131 |
+
sampling_rate: Optional[int] = None,
|
132 |
return_tensors: Union[TensorType, str, None] = TensorType.PYTORCH
|
133 |
) -> BatchFeature:
|
134 |
+
|
135 |
if not isinstance(audios, list):
|
136 |
audios = [audios]
|
137 |
|
138 |
processed_mel_spectrograms: List[torch.Tensor] = []
|
139 |
actual_mel_lengths: List[int] = []
|
140 |
+
downstream_sizes_for_token_calc: List[torch.Tensor] = []
|
|
|
|
|
141 |
downstream_frames_scaled_for_token_calc: List[int] = []
|
142 |
|
143 |
for audio_input_item in audios:
|
|
|
154 |
"sampling_rate must be provided if audio inputs are raw numpy arrays or lists."
|
155 |
)
|
156 |
source_sr = sampling_rate
|
157 |
+
else:
|
158 |
raise TypeError(
|
159 |
f"Unsupported audio input type: {type(audio_input_item)}. "
|
160 |
"This extractor expects np.ndarray, list of floats, or Tuple[np.ndarray, int indicating SR]."
|
161 |
)
|
162 |
|
163 |
processed_wav = self._preprocess_audio(current_wav_array, source_sr)
|
164 |
+
mel_spectrogram = self._compute_log_mel_spectrogram(processed_wav)
|
165 |
+
|
166 |
+
feature_tensor = torch.from_numpy(mel_spectrogram)
|
|
|
167 |
processed_mel_spectrograms.append(feature_tensor)
|
168 |
+
actual_mel_lengths.append(feature_tensor.shape[0])
|
169 |
|
|
|
170 |
downstream_sizes_for_token_calc.append(torch.tensor(self._calculate_embed_length(feature_tensor.shape[0])))
|
171 |
downstream_frames_scaled_for_token_calc.append(feature_tensor.shape[0] * self.feat_stride)
|
172 |
|
|
|
|
|
173 |
audio_values = pad_sequence(processed_mel_spectrograms, batch_first=True, padding_value=self.padding_value)
|
174 |
+
max_mel_len = audio_values.shape[1]
|
|
|
|
|
175 |
lengths_tensor = torch.tensor(actual_mel_lengths, dtype=torch.long)
|
176 |
+
audio_attention_mask = torch.arange(max_mel_len).unsqueeze(0).expand(len(audios), -1) < lengths_tensor.unsqueeze(1)
|
177 |
+
|
|
|
|
|
178 |
output_data = {
|
179 |
+
"audio_values": audio_values,
|
180 |
+
"audio_attention_mask": audio_attention_mask
|
181 |
}
|
182 |
+
|
183 |
+
if downstream_sizes_for_token_calc:
|
184 |
+
output_data["audio_token_calc_sizes"] = torch.stack(downstream_sizes_for_token_calc)
|
185 |
+
|
|
|
|
|
|
|
186 |
return BatchFeature(data=output_data, tensor_type=return_tensors)
|
187 |
|
188 |
def _preprocess_audio(self, wav: np.ndarray, source_sr: int) -> np.ndarray:
|
189 |
if wav.dtype not in [np.float32, np.float64]:
|
|
|
190 |
if np.issubdtype(wav.dtype, np.integer):
|
191 |
max_val = np.iinfo(wav.dtype).max
|
192 |
wav = wav.astype(np.float32) / max_val
|
193 |
+
else:
|
194 |
wav = wav.astype(np.float32)
|
195 |
+
|
196 |
if wav.ndim > 1:
|
197 |
+
wav = wav.mean(axis=0)
|
198 |
+
|
199 |
if source_sr != self.sampling_rate:
|
|
|
|
|
200 |
gcd = math.gcd(self.sampling_rate, source_sr)
|
201 |
up_factor = self.sampling_rate // gcd
|
202 |
down_factor = source_sr // gcd
|
203 |
+
if up_factor != down_factor:
|
204 |
+
logger.info(f"Resampling audio from {source_sr} Hz to {self.sampling_rate} Hz.")
|
205 |
+
wav = scipy.signal.resample_poly(wav, up=up_factor, down=down_factor)
|
206 |
+
|
|
|
207 |
norm_factor = np.abs(wav).max()
|
208 |
+
if norm_factor > 1e-9:
|
209 |
wav = wav / norm_factor
|
210 |
return wav
|
211 |
|
|
|
214 |
padding = self.win_length - len(wav)
|
215 |
wav = np.pad(wav, (0, padding), mode='constant', constant_values=0.0)
|
216 |
|
|
|
|
|
217 |
num_frames = 1 + (len(wav) - self.win_length) // self.hop_length
|
218 |
if num_frames <= 0:
|
219 |
+
logger.warning(f"Audio of length {len(wav)} is too short to produce frames with win_length {self.win_length} and hop_length {self.hop_length}. Returning empty mel spectrogram.")
|
|
|
220 |
return np.zeros((0, self.n_mels), dtype=np.float32)
|
221 |
|
222 |
frames = np.lib.stride_tricks.as_strided(
|
|
|
225 |
strides=(wav.strides[0] * self.hop_length, wav.strides[0]),
|
226 |
writeable=False
|
227 |
)
|
228 |
+
|
229 |
windowed_frames = frames * self.window
|
230 |
+
stft_matrix = np.fft.rfft(windowed_frames, n=self.n_fft, axis=-1)
|
231 |
+
powers = np.abs(stft_matrix)**2
|
232 |
+
mel_spectrogram = np.dot(powers, self.mel_filterbank)
|
|
|
|
|
|
|
233 |
mel_spectrogram = np.clip(mel_spectrogram, LOG_MEL_CLIP_EPSILON, None)
|
234 |
log_mel_spectrogram = np.log(mel_spectrogram)
|
235 |
+
|
236 |
return log_mel_spectrogram.astype(np.float32)
|
237 |
|
238 |
def _calculate_embed_length(self, frame_count: int) -> int:
|
|
|
|
|
239 |
compressed = math.ceil(frame_count / self.compression_rate)
|
240 |
return math.ceil(compressed / self.qformer_rate)
|
241 |
|
242 |
+
class Gemma3DummyProcessorKwargs(ProcessingKwargs, total=False): # Dummy for testing structure
|
|
|
|
|
|
|
243 |
images_kwargs: Dict[str, Any]
|
244 |
audio_kwargs: Dict[str, Any]
|
245 |
+
text_kwargs: Dict[str, Any]
|
246 |
_defaults = {
|
247 |
"text_kwargs": {"padding": False, "truncation": False, "max_length": DEFAULT_MAX_LENGTH},
|
248 |
"images_kwargs": {},
|
249 |
"audio_kwargs": {}
|
250 |
}
|
251 |
|
|
|
252 |
class Gemma3OmniProcessor(ProcessorMixin):
|
253 |
attributes = ["image_processor", "audio_processor", "tokenizer"]
|
254 |
+
# Define class attributes for ProcessorMixin to find/use them
|
255 |
+
image_processor_class = "AutoImageProcessor" # Or the specific class string if not auto
|
256 |
+
audio_processor_class = Gemma3AudioFeatureExtractor # Correctly points to your custom class
|
257 |
+
tokenizer_class = "AutoTokenizer" # Or the specific class string
|
258 |
|
259 |
+
# valid_kwargs was in user's code, its role depends on ProcessorMixin internal usage
|
260 |
+
valid_kwargs = ["chat_template", "image_seq_length"]
|
261 |
|
262 |
def __init__(
|
263 |
self,
|
264 |
+
tokenizer,
|
265 |
audio_processor: Optional[Union[Gemma3AudioFeatureExtractor, Dict]] = None,
|
266 |
+
image_processor = None,
|
267 |
chat_template=None,
|
268 |
+
image_seq_length: int = 256,
|
269 |
+
audio_prompt_compression_rate: int = 8,
|
|
|
270 |
audio_prompt_qformer_rate: int = 1,
|
271 |
audio_prompt_feat_stride: int = 1,
|
272 |
+
audio_placeholder_token: str = "<|audio_placeholder|>",
|
273 |
+
audio_soft_token_str: str = "<audio_soft_token>",
|
274 |
**kwargs
|
275 |
):
|
276 |
+
# Instantiate audio_processor if config dict is passed or if None (use defaults)
|
277 |
if audio_processor is None:
|
278 |
+
logger.info("Initializing Gemma3AudioFeatureExtractor with default parameters for Gemma3OmniProcessor.")
|
279 |
audio_processor = Gemma3AudioFeatureExtractor()
|
280 |
elif isinstance(audio_processor, Dict):
|
281 |
audio_processor = Gemma3AudioFeatureExtractor(**audio_processor)
|
282 |
+
elif not isinstance(audio_processor, Gemma3AudioFeatureExtractor): # Check type if instance is passed
|
283 |
+
raise TypeError(f"audio_processor must be an instance of Gemma3AudioFeatureExtractor or a config dict, got {type(audio_processor)}")
|
284 |
+
|
285 |
+
# Handle image_processor similarly if it can be None or a dict
|
286 |
+
if image_processor is None and self.image_processor_class:
|
287 |
+
# This is a basic way; from_pretrained usually handles complex loading
|
288 |
+
if isinstance(self.image_processor_class, str) and self.image_processor_class == "AutoImageProcessor":
|
289 |
+
logger.info(f"Attempting to load a default {self.image_processor_class}. This might require a default model name or fail.")
|
290 |
+
# image_processor = AutoImageProcessor.from_pretrained("openai/clip-vit-base-patch32") # Example default
|
291 |
+
# else if self.image_processor_class is an actual class, instantiate it.
|
292 |
+
elif isinstance(image_processor, Dict):
|
293 |
+
# image_processor = AutoImageProcessor.from_config(config_class(**image_processor)) # Example
|
294 |
+
pass # Actual instantiation from dict would be more complex
|
295 |
+
|
296 |
+
# Ensure tokenizer is an instantiated object
|
297 |
+
if isinstance(tokenizer, str): # If tokenizer is a string (model name/path)
|
298 |
+
logger.info(f"Loading tokenizer from {tokenizer}")
|
299 |
+
# tokenizer = AutoTokenizer.from_pretrained(tokenizer) # This is how it's usually done
|
300 |
+
elif tokenizer is None:
|
301 |
+
raise ValueError("A tokenizer instance or identifier must be provided.")
|
302 |
|
|
|
|
|
|
|
|
|
|
|
303 |
|
304 |
super().__init__(
|
305 |
image_processor=image_processor,
|
306 |
audio_processor=audio_processor,
|
307 |
tokenizer=tokenizer,
|
308 |
chat_template=chat_template,
|
309 |
+
**kwargs # Pass other kwargs to super
|
310 |
)
|
311 |
+
|
312 |
self.image_seq_length = image_seq_length
|
313 |
+
self.image_token_id = getattr(self.tokenizer, "image_token_id", self.tokenizer.unk_token_id if hasattr(self.tokenizer, "unk_token_id") else None)
|
314 |
+
self.boi_token = getattr(self.tokenizer, "boi_token", "<|image|>")
|
315 |
+
self.image_token = getattr(self.tokenizer, "image_token", "<|image|>")
|
316 |
+
self.eoi_token = getattr(self.tokenizer, "eoi_token", "")
|
|
|
|
|
317 |
|
318 |
self.audio_placeholder_token = audio_placeholder_token
|
319 |
self.audio_soft_token_str = audio_soft_token_str
|
320 |
+
|
|
|
321 |
self.audio_soft_token_id = self.tokenizer.convert_tokens_to_ids(self.audio_soft_token_str)
|
322 |
+
if self.audio_soft_token_id == self.tokenizer.unk_token_id: # Check if UNK
|
323 |
+
logger.warning(
|
324 |
+
f"The audio soft token string '{self.audio_soft_token_str}' maps to UNK token (ID: {self.audio_soft_token_id}). "
|
325 |
"Ensure it is added to the tokenizer's vocabulary as a special token."
|
326 |
)
|
|
|
|
|
|
|
|
|
327 |
|
328 |
self.full_image_sequence_str = f"\n\n{self.boi_token}{''.join([self.image_token] * self.image_seq_length)}{self.eoi_token}\n\n"
|
329 |
|
|
|
330 |
self.audio_prompt_compression_rate = audio_prompt_compression_rate
|
331 |
self.audio_prompt_qformer_rate = audio_prompt_qformer_rate
|
332 |
self.audio_prompt_feat_stride = audio_prompt_feat_stride
|
333 |
|
334 |
+
|
335 |
+
def _merge_kwargs(self, KwargsClassWithDefaults, tokenizer_init_kwargs, **kwargs_passed_to_call):
|
|
|
336 |
final_kwargs = {}
|
337 |
# Initialize with _defaults from the Kwargs class
|
338 |
+
# Ensure KwargsClassWithDefaults has a _defaults attribute
|
339 |
+
_defaults = getattr(KwargsClassWithDefaults, "_defaults", {})
|
340 |
+
for modality_key, default_modality_kwargs in _defaults.items():
|
341 |
final_kwargs[modality_key] = default_modality_kwargs.copy()
|
342 |
|
343 |
# Override with tokenizer's init_kwargs if they exist for a given key
|
344 |
for modality_key, modality_dict in final_kwargs.items():
|
345 |
+
for key in list(modality_dict.keys()):
|
346 |
if key in tokenizer_init_kwargs:
|
347 |
modality_dict[key] = tokenizer_init_kwargs[key]
|
348 |
+
|
349 |
+
# Override with kwargs passed directly to __call__
|
350 |
+
for modality_key_from_call, modality_dict_from_call in kwargs_passed_to_call.items():
|
351 |
+
if modality_key_from_call in final_kwargs and isinstance(modality_dict_from_call, dict):
|
352 |
+
final_kwargs[modality_key_from_call].update(modality_dict_from_call)
|
353 |
+
# If a new modality_kwargs (e.g., "video_kwargs") is passed, add it
|
354 |
+
elif modality_key_from_call not in final_kwargs and isinstance(modality_dict_from_call, dict):
|
355 |
+
final_kwargs[modality_key_from_call] = modality_dict_from_call.copy()
|
356 |
+
|
357 |
+
# Specific handling for text_kwargs
|
358 |
+
if "text_kwargs" not in final_kwargs:
|
359 |
+
final_kwargs["text_kwargs"] = {} # Ensure it exists
|
360 |
+
final_kwargs["text_kwargs"]["truncation"] = final_kwargs["text_kwargs"].get("truncation", False)
|
361 |
+
final_kwargs["text_kwargs"]["max_length"] = final_kwargs["text_kwargs"].get("max_length", DEFAULT_MAX_LENGTH)
|
362 |
+
|
|
|
|
|
|
|
363 |
return final_kwargs
|
364 |
|
365 |
def _compute_audio_prompt_token_count(self, actual_mel_frames_count: int) -> int:
|
|
|
|
|
366 |
scaled_frames = actual_mel_frames_count * self.audio_prompt_feat_stride
|
367 |
compressed_once = math.ceil(scaled_frames / self.audio_prompt_compression_rate)
|
368 |
compressed_twice = math.ceil(compressed_once / self.audio_prompt_qformer_rate)
|
|
|
371 |
def __call__(
|
372 |
self,
|
373 |
text: Union[str, List[str]] = None,
|
374 |
+
images: Optional[Any] = None,
|
375 |
audios: Optional[Union[AudioInput, List[AudioInput]]] = None,
|
376 |
+
sampling_rate: Optional[int] = None,
|
377 |
+
return_tensors: Optional[Union[str, TensorType]] = None,
|
378 |
+
**kwargs: Any
|
379 |
) -> BatchFeature:
|
380 |
+
|
381 |
if text is None and images is None and audios is None:
|
382 |
raise ValueError("Provide at least one of `text`, `images`, or `audios`.")
|
383 |
|
384 |
+
# Determine final return_tensors strategy
|
385 |
+
# Priority: 1. Explicit return_tensors, 2. from text_kwargs in **kwargs, 3. Default (PT)
|
386 |
+
final_rt = return_tensors
|
387 |
+
merged_call_kwargs = self._merge_kwargs(
|
388 |
+
Gemma3DummyProcessorKwargs, # Using dummy for _defaults structure
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
389 |
self.tokenizer.init_kwargs if hasattr(self.tokenizer, 'init_kwargs') else {},
|
390 |
+
**kwargs
|
391 |
)
|
392 |
+
|
393 |
+
if final_rt is None: # If not passed directly to __call__
|
394 |
+
final_rt = merged_call_kwargs.get("text_kwargs", {}).pop("return_tensors", TensorType.PYTORCH)
|
395 |
+
else: # If passed directly, remove from text_kwargs to avoid conflict
|
396 |
+
merged_call_kwargs.get("text_kwargs", {}).pop("return_tensors", None)
|
397 |
+
|
398 |
|
|
|
399 |
if text is None:
|
400 |
num_samples = 0
|
401 |
if images is not None:
|
402 |
+
_images_list = images if isinstance(images, list) and (not images or not isinstance(images[0], (int, float))) else [images]
|
403 |
+
num_samples = len(_images_list)
|
404 |
elif audios is not None:
|
405 |
+
_audios_list = audios if isinstance(audios, list) else [audios]
|
406 |
+
num_samples = len(_audios_list)
|
407 |
+
text = [""] * num_samples if num_samples > 0 else [""]
|
408 |
+
|
409 |
if isinstance(text, str):
|
410 |
text = [text]
|
411 |
if not (isinstance(text, list) and all(isinstance(t, str) for t in text)):
|
412 |
raise ValueError("Input `text` must be a string or a list of strings.")
|
413 |
|
414 |
+
image_features_dict = {}
|
|
|
415 |
if images is not None and self.image_processor is not None:
|
416 |
logger.info("Processing images...")
|
417 |
+
# image_features_dict = self.image_processor(images, return_tensors=None, **merged_call_kwargs.get("images_kwargs", {}))
|
418 |
+
# Simplified: Actual image token replacement logic for `text` would go here.
|
419 |
+
# text = self._handle_image_text_replacement(text, images, image_features_dict)
|
420 |
+
pass
|
421 |
+
|
422 |
+
|
423 |
+
audio_features_dict = {}
|
|
|
424 |
if audios is not None and self.audio_processor is not None:
|
425 |
logger.info("Processing audio...")
|
426 |
+
audio_call_kwargs = merged_call_kwargs.get("audio_kwargs", {})
|
427 |
+
if sampling_rate:
|
428 |
+
audio_call_kwargs["sampling_rate"] = sampling_rate
|
429 |
+
|
430 |
+
# audio_processor.__call__ returns BatchFeature, we need its .data attribute
|
431 |
+
audio_features_batch_feature = self.audio_processor(audios=audios, return_tensors=None, **audio_call_kwargs)
|
432 |
+
audio_features_dict = audio_features_batch_feature.data # Get the dict
|
433 |
|
|
|
|
|
|
|
|
|
|
|
434 |
new_text_with_audio = []
|
435 |
+
# audio_attention_mask shape is (B, Max_T_mel)
|
436 |
+
audio_sample_mel_lengths = to_py_obj(audio_features_dict["audio_attention_mask"].sum(axis=-1))
|
|
|
437 |
|
438 |
for i, prompt in enumerate(text):
|
439 |
+
num_soft_tokens = self._compute_audio_prompt_token_count(audio_sample_mel_lengths[i])
|
440 |
audio_token_sequence_str = self.audio_soft_token_str * num_soft_tokens
|
441 |
+
|
442 |
if self.audio_placeholder_token in prompt:
|
443 |
prompt = prompt.replace(self.audio_placeholder_token, audio_token_sequence_str, 1)
|
444 |
+
else:
|
445 |
+
prompt += audio_token_sequence_str
|
446 |
new_text_with_audio.append(prompt)
|
447 |
text = new_text_with_audio
|
448 |
+
|
|
|
449 |
logger.info("Tokenizing text...")
|
450 |
+
text_call_kwargs = merged_call_kwargs.get("text_kwargs", {})
|
451 |
+
text_features_dict = self.tokenizer(text, return_tensors=None, **text_call_kwargs)
|
|
|
452 |
|
453 |
+
input_ids_list = text_features_dict["input_ids"]
|
454 |
+
if not isinstance(input_ids_list, list) or not (input_ids_list and isinstance(input_ids_list[0], list)):
|
455 |
+
if isinstance(input_ids_list, (torch.Tensor, np.ndarray)):
|
456 |
+
input_ids_list = to_py_obj(input_ids_list) # Convert tensor/np.array to list of lists
|
457 |
+
elif isinstance(input_ids_list, list) and (not input_ids_list or isinstance(input_ids_list[0], int)):
|
458 |
+
input_ids_list = [input_ids_list]
|
459 |
|
460 |
token_type_ids_list = []
|
461 |
for ids_sample in input_ids_list:
|
462 |
+
types = [0] * len(ids_sample)
|
463 |
for j, token_id in enumerate(ids_sample):
|
464 |
if self.image_token_id is not None and token_id == self.image_token_id:
|
465 |
+
types[j] = 1
|
466 |
+
elif token_id == self.audio_soft_token_id:
|
467 |
+
types[j] = 2
|
468 |
token_type_ids_list.append(types)
|
469 |
+
text_features_dict["token_type_ids"] = token_type_ids_list
|
470 |
+
|
471 |
+
combined_features = {**text_features_dict}
|
472 |
+
if image_features_dict:
|
473 |
+
combined_features.update(image_features_dict)
|
474 |
+
if audio_features_dict:
|
475 |
+
combined_features.update(audio_features_dict)
|
476 |
+
|
|
|
477 |
return BatchFeature(data=combined_features, tensor_type=final_rt)
|
478 |
|
479 |
def batch_decode(self, *args, **kwargs):
|
|
|
484 |
|
485 |
@property
|
486 |
def model_input_names(self) -> List[str]:
|
|
|
|
|
|
|
487 |
input_names = set(self.tokenizer.model_input_names + ["token_type_ids"])
|
488 |
if self.image_processor is not None:
|
489 |
input_names.update(self.image_processor.model_input_names)
|
490 |
if self.audio_processor is not None:
|
491 |
+
# From Gemma3AudioFeatureExtractor's output_data keys
|
492 |
+
input_names.update(["audio_values", "audio_attention_mask"])
|
493 |
+
# "audio_token_calc_sizes" is internal to processor, not model.
|
494 |
return list(input_names)
|