```python import torch from transformers import AutoModelForSequenceClassification, AutoTokenizer from datasets import Dataset device = "cuda" path = "Unbabel/mfineweb-edu-classifier" model = AutoModelForSequenceClassification.from_pretrained( path, device_map=device, trust_remote_code=True, torch_dtype=torch.bfloat16 ) tokenizer = AutoTokenizer.from_pretrained(path, use_fast=True) def tokenize(examples): return tokenizer(examples["text"], truncation=True, max_length=512) texts = [ "This is a text", "this is another text to classify" ] model_inputs = [ tokenizer(text, truncation=True, max_length=512) for text in texts ] with torch.no_grad(): for model_input in model_inputs: output = model(input_ids) ```