danielhanchen commited on
Commit
c6aa575
·
verified ·
1 Parent(s): d39acba

Add files using upload-large-folder tool

Browse files
.gitattributes CHANGED
@@ -33,3 +33,7 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
37
+ model.safetensors filter=lfs diff=lfs merge=lfs -text
38
+ tokenizer.config filter=lfs diff=lfs merge=lfs -text
39
+ tokenizer.model filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,483 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: gemma
3
+ library_name: transformers
4
+ pipeline_tag: text-generation
5
+ extra_gated_heading: Access Gemma on Hugging Face
6
+ extra_gated_prompt: >-
7
+ To access Gemma on Hugging Face, you’re required to review and agree to
8
+ Google’s usage license. To do this, please ensure you’re logged in to Hugging
9
+ Face and click below. Requests are processed immediately.
10
+ extra_gated_button_content: Acknowledge license
11
+ ---
12
+
13
+ # Gemma 3 model card
14
+
15
+ **Model Page**: [Gemma](https://ai.google.dev/gemma/docs/core)
16
+
17
+ **Resources and Technical Documentation**:
18
+
19
+ * [Gemma 3 Technical Report][g3-tech-report]
20
+ * [Responsible Generative AI Toolkit][rai-toolkit]
21
+ * [Gemma on Kaggle][kaggle-gemma]
22
+ * [Gemma on Vertex Model Garden][vertex-mg-gemma3]
23
+
24
+ **Terms of Use**: [Terms][terms]
25
+
26
+ **Authors**: Google DeepMind
27
+
28
+ ## Model Information
29
+
30
+ Summary description and brief definition of inputs and outputs.
31
+
32
+ ### Description
33
+
34
+ Gemma is a family of lightweight, state-of-the-art open models from Google,
35
+ built from the same research and technology used to create the Gemini models.
36
+ Gemma 3 models are multimodal, handling text and image input and generating text
37
+ output, with open weights for both pre-trained variants and instruction-tuned
38
+ variants. Gemma 3 has a large, 128K context window, multilingual support in over
39
+ 140 languages, and is available in more sizes than previous versions. Gemma 3
40
+ models are well-suited for a variety of text generation and image understanding
41
+ tasks, including question answering, summarization, and reasoning. Their
42
+ relatively small size makes it possible to deploy them in environments with
43
+ limited resources such as laptops, desktops or your own cloud infrastructure,
44
+ democratizing access to state of the art AI models and helping foster innovation
45
+ for everyone.
46
+
47
+ ### Usage
48
+
49
+ Below, there are some code snippets on how to get quickly started with running the model. First, install the Transformers library with the version made for Gemma 3:
50
+
51
+ ```sh
52
+
53
+ $ pip install git+https://github.com/huggingface/transformers@v4.49.0-Gemma3
54
+
55
+ ```
56
+
57
+ Then, copy the snippet from the section that is relevant for your use case.
58
+
59
+ #### Running with the `pipeline` API
60
+
61
+ ```python
62
+ from transformers import pipeline
63
+
64
+ pipe = pipeline("text-generation", model="google/gemma-3-1b-pt", device="cuda", torch_dtype=torch.bfloat16)
65
+ output = pipe("Eiffel tower is located in", max_new_tokens=50)
66
+ ```
67
+
68
+ #### Running the model on a single / multi GPU
69
+
70
+ ```python
71
+ import torch
72
+ from transformers import AutoTokenizer, Gemma3ForCausalLM
73
+
74
+ ckpt = "google/gemma-3-1b-pt"
75
+ tokenizer = AutoTokenizer.from_pretrained(ckpt)
76
+ model = Gemma3ForCausalLM.from_pretrained(
77
+ ckpt,
78
+ torch_dtype=torch.bfloat16,
79
+ device_map="auto"
80
+ )
81
+
82
+ prompt = "Eiffel tower is located in"
83
+ model_inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
84
+
85
+ input_len = model_inputs["input_ids"].shape[-1]
86
+
87
+ with torch.inference_mode():
88
+ generation = model.generate(**model_inputs, max_new_tokens=50, do_sample=False)
89
+ generation = generation[0][input_len:]
90
+
91
+ decoded = tokenizer.decode(generation, skip_special_tokens=True)
92
+ print(decoded)
93
+ ```
94
+
95
+
96
+ ### Inputs and outputs
97
+
98
+ - **Input:**
99
+ - Text string, such as a question, a prompt, or a document to be summarized
100
+ - Images, normalized to 896 x 896 resolution and encoded to 256 tokens
101
+ each
102
+ - Total input context of 128K tokens for the 4B, 12B, and 27B sizes, and
103
+ 32K tokens for the 1B size
104
+
105
+ - **Output:**
106
+ - Generated text in response to the input, such as an answer to a
107
+ question, analysis of image content, or a summary of a document
108
+ - Total output context of 8192 tokens
109
+
110
+ ### Citation
111
+
112
+ ```none
113
+ @article{gemma_2025,
114
+ title={Gemma 3},
115
+ url={https://goo.gle/Gemma3Report},
116
+ publisher={Kaggle},
117
+ author={Gemma Team},
118
+ year={2025}
119
+ }
120
+ ```
121
+
122
+ ## Model Data
123
+
124
+ Data used for model training and how the data was processed.
125
+
126
+ ### Training Dataset
127
+
128
+ These models were trained on a dataset of text data that includes a wide variety
129
+ of sources. The 27B model was trained with 14 trillion tokens, the 12B model was
130
+ trained with 12 trillion tokens, 4B model was trained with 4 trillion tokens and
131
+ 1B with 2 trillion tokens. Here are the key components:
132
+
133
+ - Web Documents: A diverse collection of web text ensures the model is
134
+ exposed to a broad range of linguistic styles, topics, and vocabulary. The
135
+ training dataset includes content in over 140 languages.
136
+ - Code: Exposing the model to code helps it to learn the syntax and
137
+ patterns of programming languages, which improves its ability to generate
138
+ code and understand code-related questions.
139
+ - Mathematics: Training on mathematical text helps the model learn logical
140
+ reasoning, symbolic representation, and to address mathematical queries.
141
+ - Images: A wide range of images enables the model to perform image
142
+ analysis and visual data extraction tasks.
143
+
144
+ The combination of these diverse data sources is crucial for training a powerful
145
+ multimodal model that can handle a wide variety of different tasks and data
146
+ formats.
147
+
148
+ ### Data Preprocessing
149
+
150
+ Here are the key data cleaning and filtering methods applied to the training
151
+ data:
152
+
153
+ - CSAM Filtering: Rigorous CSAM (Child Sexual Abuse Material) filtering
154
+ was applied at multiple stages in the data preparation process to ensure
155
+ the exclusion of harmful and illegal content.
156
+ - Sensitive Data Filtering: As part of making Gemma pre-trained models
157
+ safe and reliable, automated techniques were used to filter out certain
158
+ personal information and other sensitive data from training sets.
159
+ - Additional methods: Filtering based on content quality and safety in
160
+ line with [our policies][safety-policies].
161
+
162
+ ## Implementation Information
163
+
164
+ Details about the model internals.
165
+
166
+ ### Hardware
167
+
168
+ Gemma was trained using [Tensor Processing Unit (TPU)][tpu] hardware (TPUv4p,
169
+ TPUv5p and TPUv5e). Training vision-language models (VLMS) requires significant
170
+ computational power. TPUs, designed specifically for matrix operations common in
171
+ machine learning, offer several advantages in this domain:
172
+
173
+ - Performance: TPUs are specifically designed to handle the massive
174
+ computations involved in training VLMs. They can speed up training
175
+ considerably compared to CPUs.
176
+ - Memory: TPUs often come with large amounts of high-bandwidth memory,
177
+ allowing for the handling of large models and batch sizes during training.
178
+ This can lead to better model quality.
179
+ - Scalability: TPU Pods (large clusters of TPUs) provide a scalable
180
+ solution for handling the growing complexity of large foundation models.
181
+ You can distribute training across multiple TPU devices for faster and more
182
+ efficient processing.
183
+ - Cost-effectiveness: In many scenarios, TPUs can provide a more
184
+ cost-effective solution for training large models compared to CPU-based
185
+ infrastructure, especially when considering the time and resources saved
186
+ due to faster training.
187
+ - These advantages are aligned with
188
+ [Google's commitments to operate sustainably][sustainability].
189
+
190
+ ### Software
191
+
192
+ Training was done using [JAX][jax] and [ML Pathways][ml-pathways].
193
+
194
+ JAX allows researchers to take advantage of the latest generation of hardware,
195
+ including TPUs, for faster and more efficient training of large models. ML
196
+ Pathways is Google's latest effort to build artificially intelligent systems
197
+ capable of generalizing across multiple tasks. This is specially suitable for
198
+ foundation models, including large language models like these ones.
199
+
200
+ Together, JAX and ML Pathways are used as described in the
201
+ [paper about the Gemini family of models][gemini-2-paper]; *"the 'single
202
+ controller' programming model of Jax and Pathways allows a single Python
203
+ process to orchestrate the entire training run, dramatically simplifying the
204
+ development workflow."*
205
+
206
+ ## Evaluation
207
+
208
+ Model evaluation metrics and results.
209
+
210
+ ### Benchmark Results
211
+
212
+ These models were evaluated against a large collection of different datasets and
213
+ metrics to cover different aspects of text generation:
214
+
215
+ #### Reasoning and factuality
216
+
217
+ | Benchmark | Metric | Gemma 3 PT 1B | Gemma 3 PT 4B | Gemma 3 PT 12B | Gemma 3 PT 27B |
218
+ | ------------------------------ |----------------|:--------------:|:-------------:|:--------------:|:--------------:|
219
+ | [HellaSwag][hellaswag] | 10-shot | 62.3 | 77.2 | 84.2 | 85.6 |
220
+ | [BoolQ][boolq] | 0-shot | 63.2 | 72.3 | 78.8 | 82.4 |
221
+ | [PIQA][piqa] | 0-shot | 73.8 | 79.6 | 81.8 | 83.3 |
222
+ | [SocialIQA][socialiqa] | 0-shot | 48.9 | 51.9 | 53.4 | 54.9 |
223
+ | [TriviaQA][triviaqa] | 5-shot | 39.8 | 65.8 | 78.2 | 85.5 |
224
+ | [Natural Questions][naturalq] | 5-shot | 9.48 | 20.0 | 31.4 | 36.1 |
225
+ | [ARC-c][arc] | 25-shot | 38.4 | 56.2 | 68.9 | 70.6 |
226
+ | [ARC-e][arc] | 0-shot | 73.0 | 82.4 | 88.3 | 89.0 |
227
+ | [WinoGrande][winogrande] | 5-shot | 58.2 | 64.7 | 74.3 | 78.8 |
228
+ | [BIG-Bench Hard][bbh] | few-shot | 28.4 | 50.9 | 72.6 | 77.7 |
229
+ | [DROP][drop] | 1-shot | 42.4 | 60.1 | 72.2 | 77.2 |
230
+
231
+ [hellaswag]: https://arxiv.org/abs/1905.07830
232
+ [boolq]: https://arxiv.org/abs/1905.10044
233
+ [piqa]: https://arxiv.org/abs/1911.11641
234
+ [socialiqa]: https://arxiv.org/abs/1904.09728
235
+ [triviaqa]: https://arxiv.org/abs/1705.03551
236
+ [naturalq]: https://github.com/google-research-datasets/natural-questions
237
+ [arc]: https://arxiv.org/abs/1911.01547
238
+ [winogrande]: https://arxiv.org/abs/1907.10641
239
+ [bbh]: https://paperswithcode.com/dataset/bbh
240
+ [drop]: https://arxiv.org/abs/1903.00161
241
+
242
+ #### STEM and code
243
+
244
+ | Benchmark | Metric | Gemma 3 PT 4B | Gemma 3 PT 12B | Gemma 3 PT 27B |
245
+ | ------------------------------ |----------------|:-------------:|:--------------:|:--------------:|
246
+ | [MMLU][mmlu] | 5-shot | 59.6 | 74.5 | 78.6 |
247
+ | [MMLU][mmlu] (Pro COT) | 5-shot | 29.2 | 45.3 | 52.2 |
248
+ | [AGIEval][agieval] | 3-5-shot | 42.1 | 57.4 | 66.2 |
249
+ | [MATH][math] | 4-shot | 24.2 | 43.3 | 50.0 |
250
+ | [GSM8K][gsm8k] | 8-shot | 38.4 | 71.0 | 82.6 |
251
+ | [GPQA][gpqa] | 5-shot | 15.0 | 25.4 | 24.3 |
252
+ | [MBPP][mbpp] | 3-shot | 46.0 | 60.4 | 65.6 |
253
+ | [HumanEval][humaneval] | 0-shot | 36.0 | 45.7 | 48.8 |
254
+
255
+ [mmlu]: https://arxiv.org/abs/2009.03300
256
+ [agieval]: https://arxiv.org/abs/2304.06364
257
+ [math]: https://arxiv.org/abs/2103.03874
258
+ [gsm8k]: https://arxiv.org/abs/2110.14168
259
+ [gpqa]: https://arxiv.org/abs/2311.12022
260
+ [mbpp]: https://arxiv.org/abs/2108.07732
261
+ [humaneval]: https://arxiv.org/abs/2107.03374
262
+
263
+ #### Multilingual
264
+
265
+ | Benchmark | Gemma 3 PT 1B | Gemma 3 PT 4B | Gemma 3 PT 12B | Gemma 3 PT 27B |
266
+ | ------------------------------------ |:-------------:|:-------------:|:--------------:|:--------------:|
267
+ | [MGSM][mgsm] | 2.04 | 34.7 | 64.3 | 74.3 |
268
+ | [Global-MMLU-Lite][global-mmlu-lite] | 24.9 | 57.0 | 69.4 | 75.7 |
269
+ | [WMT24++][wmt24pp] (ChrF) | 36.7 | 48.4 | 53.9 | 55.7 |
270
+ | [FloRes][flores] | 29.5 | 39.2 | 46.0 | 48.8 |
271
+ | [XQuAD][xquad] (all) | 43.9 | 68.0 | 74.5 | 76.8 |
272
+ | [ECLeKTic][eclektic] | 4.69 | 11.0 | 17.2 | 24.4 |
273
+ | [IndicGenBench][indicgenbench] | 41.4 | 57.2 | 61.7 | 63.4 |
274
+
275
+ [mgsm]: https://arxiv.org/abs/2210.03057
276
+ [flores]: https://arxiv.org/abs/2106.03193
277
+ [xquad]: https://arxiv.org/abs/1910.11856v3
278
+ [global-mmlu-lite]: https://huggingface.co/datasets/CohereForAI/Global-MMLU-Lite
279
+ [wmt24pp]: https://arxiv.org/abs/2502.12404v1
280
+ [eclektic]: https://arxiv.org/abs/2502.21228
281
+ [indicgenbench]: https://arxiv.org/abs/2404.16816
282
+
283
+ #### Multimodal
284
+
285
+ | Benchmark | Gemma 3 PT 4B | Gemma 3 PT 12B | Gemma 3 PT 27B |
286
+ | ------------------------------ |:-------------:|:--------------:|:--------------:|
287
+ | [COCOcap][coco-cap] | 102 | 111 | 116 |
288
+ | [DocVQA][docvqa] (val) | 72.8 | 82.3 | 85.6 |
289
+ | [InfoVQA][info-vqa] (val) | 44.1 | 54.8 | 59.4 |
290
+ | [MMMU][mmmu] (pt) | 39.2 | 50.3 | 56.1 |
291
+ | [TextVQA][textvqa] (val) | 58.9 | 66.5 | 68.6 |
292
+ | [RealWorldQA][realworldqa] | 45.5 | 52.2 | 53.9 |
293
+ | [ReMI][remi] | 27.3 | 38.5 | 44.8 |
294
+ | [AI2D][ai2d] | 63.2 | 75.2 | 79.0 |
295
+ | [ChartQA][chartqa] | 63.6 | 74.7 | 76.3 |
296
+ | [VQAv2][vqav2] | 63.9 | 71.2 | 72.9 |
297
+ | [BLINK][blinkvqa] | 38.0 | 35.9 | 39.6 |
298
+ | [OKVQA][okvqa] | 51.0 | 58.7 | 60.2 |
299
+ | [TallyQA][tallyqa] | 42.5 | 51.8 | 54.3 |
300
+ | [SpatialSense VQA][ss-vqa] | 50.9 | 60.0 | 59.4 |
301
+ | [CountBenchQA][countbenchqa] | 26.1 | 17.8 | 68.0 |
302
+
303
+ [coco-cap]: https://cocodataset.org/#home
304
+ [docvqa]: https://www.docvqa.org/
305
+ [info-vqa]: https://arxiv.org/abs/2104.12756
306
+ [mmmu]: https://arxiv.org/abs/2311.16502
307
+ [textvqa]: https://textvqa.org/
308
+ [realworldqa]: https://paperswithcode.com/dataset/realworldqa
309
+ [remi]: https://arxiv.org/html/2406.09175v1
310
+ [ai2d]: https://allenai.org/data/diagrams
311
+ [chartqa]: https://arxiv.org/abs/2203.10244
312
+ [vqav2]: https://visualqa.org/index.html
313
+ [blinkvqa]: https://arxiv.org/abs/2404.12390
314
+ [okvqa]: https://okvqa.allenai.org/
315
+ [tallyqa]: https://arxiv.org/abs/1810.12440
316
+ [ss-vqa]: https://arxiv.org/abs/1908.02660
317
+ [countbenchqa]: https://github.com/google-research/big_vision/blob/main/big_vision/datasets/countbenchqa/
318
+
319
+ ## Ethics and Safety
320
+
321
+ Ethics and safety evaluation approach and results.
322
+
323
+ ### Evaluation Approach
324
+
325
+ Our evaluation methods include structured evaluations and internal red-teaming
326
+ testing of relevant content policies. Red-teaming was conducted by a number of
327
+ different teams, each with different goals and human evaluation metrics. These
328
+ models were evaluated against a number of different categories relevant to
329
+ ethics and safety, including:
330
+
331
+ - **Child Safety**: Evaluation of text-to-text and image to text prompts
332
+ covering child safety policies, including child sexual abuse and
333
+ exploitation.
334
+ - **Content Safety:** Evaluation of text-to-text and image to text prompts
335
+ covering safety policies including, harassment, violence and gore, and hate
336
+ speech.
337
+ - **Representational Harms**: Evaluation of text-to-text and image to text
338
+ prompts covering safety policies including bias, stereotyping, and harmful
339
+ associations or inaccuracies.
340
+
341
+ In addition to development level evaluations, we conduct "assurance
342
+ evaluations" which are our 'arms-length' internal evaluations for responsibility
343
+ governance decision making. They are conducted separately from the model
344
+ development team, to inform decision making about release. High level findings
345
+ are fed back to the model team, but prompt sets are held-out to prevent
346
+ overfitting and preserve the results' ability to inform decision making.
347
+ Assurance evaluation results are reported to our Responsibility & Safety Council
348
+ as part of release review.
349
+
350
+ ### Evaluation Results
351
+
352
+ For all areas of safety testing, we saw major improvements in the categories of
353
+ child safety, content safety, and representational harms relative to previous
354
+ Gemma models. All testing was conducted without safety filters to evaluate the
355
+ model capabilities and behaviors. For both text-to-text and image-to-text, and
356
+ across all model sizes, the model produced minimal policy violations, and showed
357
+ significant improvements over previous Gemma models' performance with respect
358
+ to ungrounded inferences. A limitation of our evaluations was they included only
359
+ English language prompts.
360
+
361
+ ## Usage and Limitations
362
+
363
+ These models have certain limitations that users should be aware of.
364
+
365
+ ### Intended Usage
366
+
367
+ Open vision-language models (VLMs) models have a wide range of applications
368
+ across various industries and domains. The following list of potential uses is
369
+ not comprehensive. The purpose of this list is to provide contextual information
370
+ about the possible use-cases that the model creators considered as part of model
371
+ training and development.
372
+
373
+ - Content Creation and Communication
374
+ - Text Generation: These models can be used to generate creative text
375
+ formats such as poems, scripts, code, marketing copy, and email drafts.
376
+ - Chatbots and Conversational AI: Power conversational interfaces
377
+ for customer service, virtual assistants, or interactive applications.
378
+ - Text Summarization: Generate concise summaries of a text corpus,
379
+ research papers, or reports.
380
+ - Image Data Extraction: These models can be used to extract,
381
+ interpret, and summarize visual data for text communications.
382
+ - Research and Education
383
+ - Natural Language Processing (NLP) and VLM Research: These
384
+ models can serve as a foundation for researchers to experiment with VLM
385
+ and NLP techniques, develop algorithms, and contribute to the
386
+ advancement of the field.
387
+ - Language Learning Tools: Support interactive language learning
388
+ experiences, aiding in grammar correction or providing writing practice.
389
+ - Knowledge Exploration: Assist researchers in exploring large
390
+ bodies of text by generating summaries or answering questions about
391
+ specific topics.
392
+
393
+ ### Limitations
394
+
395
+ - Training Data
396
+ - The quality and diversity of the training data significantly
397
+ influence the model's capabilities. Biases or gaps in the training data
398
+ can lead to limitations in the model's responses.
399
+ - The scope of the training dataset determines the subject areas
400
+ the model can handle effectively.
401
+ - Context and Task Complexity
402
+ - Models are better at tasks that can be framed with clear
403
+ prompts and instructions. Open-ended or highly complex tasks might be
404
+ challenging.
405
+ - A model's performance can be influenced by the amount of context
406
+ provided (longer context generally leads to better outputs, up to a
407
+ certain point).
408
+ - Language Ambiguity and Nuance
409
+ - Natural language is inherently complex. Models might struggle
410
+ to grasp subtle nuances, sarcasm, or figurative language.
411
+ - Factual Accuracy
412
+ - Models generate responses based on information they learned
413
+ from their training datasets, but they are not knowledge bases. They
414
+ may generate incorrect or outdated factual statements.
415
+ - Common Sense
416
+ - Models rely on statistical patterns in language. They might
417
+ lack the ability to apply common sense reasoning in certain situations.
418
+
419
+ ### Ethical Considerations and Risks
420
+
421
+ The development of vision-language models (VLMs) raises several ethical
422
+ concerns. In creating an open model, we have carefully considered the following:
423
+
424
+ - Bias and Fairness
425
+ - VLMs trained on large-scale, real-world text and image data can
426
+ reflect socio-cultural biases embedded in the training material. These
427
+ models underwent careful scrutiny, input data pre-processing described
428
+ and posterior evaluations reported in this card.
429
+ - Misinformation and Misuse
430
+ - VLMs can be misused to generate text that is false, misleading,
431
+ or harmful.
432
+ - Guidelines are provided for responsible use with the model, see the
433
+ [Responsible Generative AI Toolkit][rai-toolkit].
434
+ - Transparency and Accountability:
435
+ - This model card summarizes details on the models' architecture,
436
+ capabilities, limitations, and evaluation processes.
437
+ - A responsibly developed open model offers the opportunity to
438
+ share innovation by making VLM technology accessible to developers and
439
+ researchers across the AI ecosystem.
440
+
441
+ Risks identified and mitigations:
442
+
443
+ - **Perpetuation of biases**: It's encouraged to perform continuous
444
+ monitoring (using evaluation metrics, human review) and the exploration of
445
+ de-biasing techniques during model training, fine-tuning, and other use
446
+ cases.
447
+ - **Generation of harmful content**: Mechanisms and guidelines for content
448
+ safety are essential. Developers are encouraged to exercise caution and
449
+ implement appropriate content safety safeguards based on their specific
450
+ product policies and application use cases.
451
+ - **Misuse for malicious purposes**: Technical limitations and developer
452
+ and end-user education can help mitigate against malicious applications of
453
+ VLMs. Educational resources and reporting mechanisms for users to flag
454
+ misuse are provided. Prohibited uses of Gemma models are outlined in the
455
+ [Gemma Prohibited Use Policy][prohibited-use].
456
+ - **Privacy violations**: Models were trained on data filtered for removal
457
+ of certain personal information and other sensitive data. Developers are
458
+ encouraged to adhere to privacy regulations with privacy-preserving
459
+ techniques.
460
+
461
+ ### Benefits
462
+
463
+ At the time of release, this family of models provides high-performance open
464
+ vision-language model implementations designed from the ground up for
465
+ responsible AI development compared to similarly sized models.
466
+
467
+ Using the benchmark evaluation metrics described in this document, these models
468
+ have shown to provide superior performance to other, comparably-sized open model
469
+ alternatives.
470
+
471
+ [g3-tech-report]: https://goo.gle/Gemma3Report
472
+ [rai-toolkit]: https://ai.google.dev/responsible
473
+ [kaggle-gemma]: https://www.kaggle.com/models/google/gemma-3
474
+ [vertex-mg-gemma3]: https://console.cloud.google.com/vertex-ai/publishers/google/model-garden/gemma3
475
+ [terms]: https://ai.google.dev/gemma/terms
476
+ [safety-policies]: https://ai.google/static/documents/ai-responsibility-update-published-february-2025.pdf
477
+ [prohibited-use]: https://ai.google.dev/gemma/prohibited_use_policy
478
+ [tpu]: https://cloud.google.com/tpu/docs/intro-to-tpu
479
+ [sustainability]: https://sustainability.google/operating-sustainably/
480
+ [jax]: https://github.com/jax-ml/jax
481
+ [ml-pathways]: https://blog.google/technology/ai/introducing-pathways-next-generation-ai-architecture/
482
+ [sustainability]: https://sustainability.google/operating-sustainably/
483
+ [gemini-2-paper]: https://arxiv.org/abs/2312.11805
added_tokens.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ {
2
+ "<image_soft_token>": 262144
3
+ }
config.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "Gemma3ForCausalLM"
4
+ ],
5
+ "attention_bias": false,
6
+ "attention_dropout": 0.0,
7
+ "attn_logit_softcapping": null,
8
+ "bos_token_id": 2,
9
+ "cache_implementation": "hybrid",
10
+ "eos_token_id": 1,
11
+ "final_logit_softcapping": null,
12
+ "head_dim": 256,
13
+ "hidden_activation": "gelu_pytorch_tanh",
14
+ "hidden_size": 1152,
15
+ "initializer_range": 0.02,
16
+ "intermediate_size": 6912,
17
+ "max_position_embeddings": 32768,
18
+ "model_type": "gemma3_text",
19
+ "num_attention_heads": 4,
20
+ "num_hidden_layers": 26,
21
+ "num_key_value_heads": 1,
22
+ "pad_token_id": 0,
23
+ "query_pre_attn_scalar": 256,
24
+ "rms_norm_eps": 1e-06,
25
+ "rope_local_base_freq": 10000,
26
+ "rope_scaling": null,
27
+ "rope_theta": 1000000,
28
+ "sliding_window": 512,
29
+ "sliding_window_pattern": 6,
30
+ "torch_dtype": "bfloat16",
31
+ "transformers_version": "4.50.0.dev0",
32
+ "use_cache": true,
33
+ "vocab_size": 262144
34
+ }
generation_config.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 2,
4
+ "cache_implementation": "hybrid",
5
+ "eos_token_id": 1,
6
+ "pad_token_id": 0,
7
+ "transformers_version": "4.50.0.dev0"
8
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ee5250f6eb1aa7cfb729dfd4dc8d9964fd772324776c6d00bf2bc674c069cb27
3
+ size 1999811208
model.safetensors.index.json ADDED
@@ -0,0 +1,348 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 5207503360
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00002-of-00002.safetensors",
7
+ "model.embed_tokens.weight": "model-00001-of-00002.safetensors",
8
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00002.safetensors",
9
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
10
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
11
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
12
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
13
+ "model.layers.0.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
14
+ "model.layers.0.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
15
+ "model.layers.0.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
16
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
17
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
18
+ "model.layers.0.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
19
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
20
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
21
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00002.safetensors",
22
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
23
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
24
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
25
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
26
+ "model.layers.1.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
27
+ "model.layers.1.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
28
+ "model.layers.1.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
29
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
30
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
31
+ "model.layers.1.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
32
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
33
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
34
+ "model.layers.10.input_layernorm.weight": "model-00001-of-00002.safetensors",
35
+ "model.layers.10.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
36
+ "model.layers.10.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
37
+ "model.layers.10.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
38
+ "model.layers.10.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
39
+ "model.layers.10.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
40
+ "model.layers.10.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
41
+ "model.layers.10.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
42
+ "model.layers.10.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
43
+ "model.layers.10.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
44
+ "model.layers.10.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
45
+ "model.layers.10.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
46
+ "model.layers.10.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
47
+ "model.layers.11.input_layernorm.weight": "model-00001-of-00002.safetensors",
48
+ "model.layers.11.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
49
+ "model.layers.11.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
50
+ "model.layers.11.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
51
+ "model.layers.11.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
52
+ "model.layers.11.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
53
+ "model.layers.11.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
54
+ "model.layers.11.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
55
+ "model.layers.11.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
56
+ "model.layers.11.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
57
+ "model.layers.11.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
58
+ "model.layers.11.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
59
+ "model.layers.11.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
60
+ "model.layers.12.input_layernorm.weight": "model-00001-of-00002.safetensors",
61
+ "model.layers.12.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
62
+ "model.layers.12.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
63
+ "model.layers.12.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
64
+ "model.layers.12.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
65
+ "model.layers.12.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
66
+ "model.layers.12.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
67
+ "model.layers.12.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
68
+ "model.layers.12.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
69
+ "model.layers.12.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
70
+ "model.layers.12.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
71
+ "model.layers.12.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
72
+ "model.layers.12.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
73
+ "model.layers.13.input_layernorm.weight": "model-00001-of-00002.safetensors",
74
+ "model.layers.13.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
75
+ "model.layers.13.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
76
+ "model.layers.13.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
77
+ "model.layers.13.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
78
+ "model.layers.13.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
79
+ "model.layers.13.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
80
+ "model.layers.13.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
81
+ "model.layers.13.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
82
+ "model.layers.13.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
83
+ "model.layers.13.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
84
+ "model.layers.13.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
85
+ "model.layers.13.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
86
+ "model.layers.14.input_layernorm.weight": "model-00001-of-00002.safetensors",
87
+ "model.layers.14.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
88
+ "model.layers.14.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
89
+ "model.layers.14.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
90
+ "model.layers.14.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
91
+ "model.layers.14.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
92
+ "model.layers.14.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
93
+ "model.layers.14.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
94
+ "model.layers.14.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
95
+ "model.layers.14.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
96
+ "model.layers.14.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
97
+ "model.layers.14.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
98
+ "model.layers.14.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
99
+ "model.layers.15.input_layernorm.weight": "model-00001-of-00002.safetensors",
100
+ "model.layers.15.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
101
+ "model.layers.15.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
102
+ "model.layers.15.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
103
+ "model.layers.15.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
104
+ "model.layers.15.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
105
+ "model.layers.15.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
106
+ "model.layers.15.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
107
+ "model.layers.15.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
108
+ "model.layers.15.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
109
+ "model.layers.15.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
110
+ "model.layers.15.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
111
+ "model.layers.15.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
112
+ "model.layers.16.input_layernorm.weight": "model-00001-of-00002.safetensors",
113
+ "model.layers.16.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
114
+ "model.layers.16.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
115
+ "model.layers.16.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
116
+ "model.layers.16.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
117
+ "model.layers.16.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
118
+ "model.layers.16.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
119
+ "model.layers.16.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
120
+ "model.layers.16.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
121
+ "model.layers.16.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
122
+ "model.layers.16.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
123
+ "model.layers.16.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
124
+ "model.layers.16.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
125
+ "model.layers.17.input_layernorm.weight": "model-00001-of-00002.safetensors",
126
+ "model.layers.17.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
127
+ "model.layers.17.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
128
+ "model.layers.17.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
129
+ "model.layers.17.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
130
+ "model.layers.17.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
131
+ "model.layers.17.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
132
+ "model.layers.17.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
133
+ "model.layers.17.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
134
+ "model.layers.17.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
135
+ "model.layers.17.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
136
+ "model.layers.17.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
137
+ "model.layers.17.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
138
+ "model.layers.18.input_layernorm.weight": "model-00001-of-00002.safetensors",
139
+ "model.layers.18.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
140
+ "model.layers.18.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
141
+ "model.layers.18.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
142
+ "model.layers.18.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
143
+ "model.layers.18.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
144
+ "model.layers.18.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
145
+ "model.layers.18.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
146
+ "model.layers.18.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
147
+ "model.layers.18.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
148
+ "model.layers.18.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
149
+ "model.layers.18.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
150
+ "model.layers.18.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
151
+ "model.layers.19.input_layernorm.weight": "model-00001-of-00002.safetensors",
152
+ "model.layers.19.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
153
+ "model.layers.19.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
154
+ "model.layers.19.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
155
+ "model.layers.19.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
156
+ "model.layers.19.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
157
+ "model.layers.19.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
158
+ "model.layers.19.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
159
+ "model.layers.19.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
160
+ "model.layers.19.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
161
+ "model.layers.19.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
162
+ "model.layers.19.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
163
+ "model.layers.19.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
164
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00002.safetensors",
165
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
166
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
167
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
168
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
169
+ "model.layers.2.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
170
+ "model.layers.2.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
171
+ "model.layers.2.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
172
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
173
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
174
+ "model.layers.2.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
175
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
176
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
177
+ "model.layers.20.input_layernorm.weight": "model-00001-of-00002.safetensors",
178
+ "model.layers.20.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
179
+ "model.layers.20.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
180
+ "model.layers.20.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
181
+ "model.layers.20.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
182
+ "model.layers.20.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
183
+ "model.layers.20.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
184
+ "model.layers.20.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
185
+ "model.layers.20.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
186
+ "model.layers.20.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
187
+ "model.layers.20.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
188
+ "model.layers.20.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
189
+ "model.layers.20.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
190
+ "model.layers.21.input_layernorm.weight": "model-00001-of-00002.safetensors",
191
+ "model.layers.21.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
192
+ "model.layers.21.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
193
+ "model.layers.21.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
194
+ "model.layers.21.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
195
+ "model.layers.21.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
196
+ "model.layers.21.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
197
+ "model.layers.21.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
198
+ "model.layers.21.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
199
+ "model.layers.21.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
200
+ "model.layers.21.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
201
+ "model.layers.21.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
202
+ "model.layers.21.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
203
+ "model.layers.22.input_layernorm.weight": "model-00001-of-00002.safetensors",
204
+ "model.layers.22.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
205
+ "model.layers.22.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
206
+ "model.layers.22.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
207
+ "model.layers.22.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
208
+ "model.layers.22.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
209
+ "model.layers.22.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
210
+ "model.layers.22.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
211
+ "model.layers.22.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
212
+ "model.layers.22.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
213
+ "model.layers.22.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
214
+ "model.layers.22.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
215
+ "model.layers.22.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
216
+ "model.layers.23.input_layernorm.weight": "model-00001-of-00002.safetensors",
217
+ "model.layers.23.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
218
+ "model.layers.23.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
219
+ "model.layers.23.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
220
+ "model.layers.23.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
221
+ "model.layers.23.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
222
+ "model.layers.23.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
223
+ "model.layers.23.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
224
+ "model.layers.23.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
225
+ "model.layers.23.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
226
+ "model.layers.23.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
227
+ "model.layers.23.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
228
+ "model.layers.23.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
229
+ "model.layers.24.input_layernorm.weight": "model-00001-of-00002.safetensors",
230
+ "model.layers.24.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
231
+ "model.layers.24.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
232
+ "model.layers.24.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
233
+ "model.layers.24.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
234
+ "model.layers.24.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
235
+ "model.layers.24.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
236
+ "model.layers.24.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
237
+ "model.layers.24.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
238
+ "model.layers.24.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
239
+ "model.layers.24.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
240
+ "model.layers.24.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
241
+ "model.layers.24.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
242
+ "model.layers.25.input_layernorm.weight": "model-00001-of-00002.safetensors",
243
+ "model.layers.25.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
244
+ "model.layers.25.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
245
+ "model.layers.25.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
246
+ "model.layers.25.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
247
+ "model.layers.25.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
248
+ "model.layers.25.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
249
+ "model.layers.25.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
250
+ "model.layers.25.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
251
+ "model.layers.25.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
252
+ "model.layers.25.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
253
+ "model.layers.25.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
254
+ "model.layers.25.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
255
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00002.safetensors",
256
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
257
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
258
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
259
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
260
+ "model.layers.3.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
261
+ "model.layers.3.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
262
+ "model.layers.3.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
263
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
264
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
265
+ "model.layers.3.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
266
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
267
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
268
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00002.safetensors",
269
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
270
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
271
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
272
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
273
+ "model.layers.4.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
274
+ "model.layers.4.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
275
+ "model.layers.4.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
276
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
277
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
278
+ "model.layers.4.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
279
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
280
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
281
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00002.safetensors",
282
+ "model.layers.5.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
283
+ "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
284
+ "model.layers.5.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
285
+ "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
286
+ "model.layers.5.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
287
+ "model.layers.5.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
288
+ "model.layers.5.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
289
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
290
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
291
+ "model.layers.5.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
292
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
293
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
294
+ "model.layers.6.input_layernorm.weight": "model-00001-of-00002.safetensors",
295
+ "model.layers.6.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
296
+ "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
297
+ "model.layers.6.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
298
+ "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
299
+ "model.layers.6.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
300
+ "model.layers.6.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
301
+ "model.layers.6.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
302
+ "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
303
+ "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
304
+ "model.layers.6.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
305
+ "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
306
+ "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
307
+ "model.layers.7.input_layernorm.weight": "model-00001-of-00002.safetensors",
308
+ "model.layers.7.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
309
+ "model.layers.7.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
310
+ "model.layers.7.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
311
+ "model.layers.7.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
312
+ "model.layers.7.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
313
+ "model.layers.7.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
314
+ "model.layers.7.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
315
+ "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
316
+ "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
317
+ "model.layers.7.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
318
+ "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
319
+ "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
320
+ "model.layers.8.input_layernorm.weight": "model-00001-of-00002.safetensors",
321
+ "model.layers.8.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
322
+ "model.layers.8.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
323
+ "model.layers.8.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
324
+ "model.layers.8.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
325
+ "model.layers.8.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
326
+ "model.layers.8.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
327
+ "model.layers.8.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
328
+ "model.layers.8.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
329
+ "model.layers.8.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
330
+ "model.layers.8.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
331
+ "model.layers.8.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
332
+ "model.layers.8.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
333
+ "model.layers.9.input_layernorm.weight": "model-00001-of-00002.safetensors",
334
+ "model.layers.9.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
335
+ "model.layers.9.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
336
+ "model.layers.9.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
337
+ "model.layers.9.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
338
+ "model.layers.9.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
339
+ "model.layers.9.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
340
+ "model.layers.9.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
341
+ "model.layers.9.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
342
+ "model.layers.9.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
343
+ "model.layers.9.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
344
+ "model.layers.9.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
345
+ "model.layers.9.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
346
+ "model.norm.weight": "model-00001-of-00002.safetensors"
347
+ }
348
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "boi_token": "<start_of_image>",
3
+ "bos_token": {
4
+ "content": "<bos>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false
9
+ },
10
+ "eoi_token": "<end_of_image>",
11
+ "eos_token": {
12
+ "content": "<eos>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false
17
+ },
18
+ "image_token": "<image_soft_token>",
19
+ "pad_token": {
20
+ "content": "<pad>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false
25
+ },
26
+ "unk_token": {
27
+ "content": "<unk>",
28
+ "lstrip": false,
29
+ "normalized": false,
30
+ "rstrip": false,
31
+ "single_word": false
32
+ }
33
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7d4046bf0505a327dd5a0abbb427ecd4fc82f99c2ceaa170bc61ecde12809b0c
3
+ size 33384570
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1299c11d7cf632ef3b4e11937501358ada021bbdf7c47638d13c0ee982f2e79c
3
+ size 4689074
tokenizer_config.json ADDED
The diff for this file is too large to render. See raw diff