---
quantized_by: ubergarm
pipeline_tag: text-generation
base_model: tngtech/DeepSeek-R1T-Chimera
license: mit
base_model_relation: quantized
tags:
- imatrix
- mla
- deepseek_v3
- conversational
- ik_llama.cpp
---
# WAIT FOR ENTIRE UPLOAD TO FINISH BEFORE DOWNLOADING!
*WARNING*
Cooked this quant on a remote rig with limited uplink, will take a while, make sure it finishes uploading before you bother downloading the GGUF files.
## `ik_llama.cpp` imatrix Quantizations of tngtech/DeepSeek-R1T-Chimera
This quant collection **REQUIRES** [ik_llama.cpp](https://github.com/ikawrakow/ik_llama.cpp/) fork to support advanced non-linear SotA quants. Do **not** download these big files and expect them to run on mainline vanilla llama.cpp, ollama, LM Studio, KoboldCpp, etc!
These quants provide best in class quality for the given memory footprint.
## Big Thanks
Special thanks to `u/un_passant` for additional hardware access for this special project!
Shout out to Wendell and the **Level1Techs** crew, the community [Forums](https://forum.level1techs.com/t/deepseek-deep-dive-r1-at-home/225826), [YouTube Channel](https://www.youtube.com/@Level1Techs)! **BIG thanks** for providing **BIG hardware** expertise and access to run these experiments and make these great quants available to the community!!!
Also thanks to all the folks in the quanting and inferencing community here and on `r/LocalLLaMA` for tips and tricks helping each other run all the fun new models!
Excited to share and learn together. Thanks!
## Quant Collection
So far these are my best recipes offering the great quality in good memory footprint breakpoints.
#### DeepSeek-R1T-Chimera-IQ4_KS
*NOTE*: This quant may take a *long time* to upload, hopefully less than a month lol...
338.456 GiB (4.326 BPW)
- type f32: 361 tensors - norms etc.
- type q6_0: 61 tensors - attn_k_b (not divisible by 256 so can't use iq6_k)
- type iq6_k: 551 tensors - balance of attn, token_embd, output, output_norm, shared experts
- type iq4_ks: 174 tensors - `ffn_(down|gate|up)_exps` routed experts
This quant is designed to take advantage of faster [iq4_ks](https://github.com/ikawrakow/ik_llama.cpp/pull/417) CUDA
performance and is *not* pre-repacked allowing multi-GPU users to offload
additional layers easily. If you have enough RAM to hold it all you can
use `-rtr` for run-time-repacking of remaining layers on CPU for improved
performance, or use the offline repack tool for a custom solution tailored
to you exact hardware configuration.
## Quantization
👈 Secret Recipe
```bash
#!/usr/bin/env bash
custom="
# Token embedding and output tensors
# note token_embd cannot be repacked quant type
token_embd\.weight=iq6_k
output\.weight=iq6_k
output_norm\.weight=iq6_k
# First 3 dense layers (0-3)
blk\.[0-2]\.attn_k_b.*=q6_0
blk\.[0-2]\.attn_.*=iq6_k
blk\.[0-2]\..*=iq6_k
# All attention, norm weights, and bias tensors for MoE layers (3-60)
# Except blk.*.attn_k_b.weight is not divisible by 256 and no iq6_k so go with q6_0
blk\.[3-9]\.attn_k_b.*=q6_0
blk\.[1-5][0-9]\.attn_k_b.*=q6_0
blk\.60\.attn_k_b.*=q6_0
blk\.[3-9]\.attn_.*=iq6_k
blk\.[1-5][0-9]\.attn_.*=iq6_k
blk\.60\.attn_.*=iq6_k
blk\.[3-9]\.ffn_norm\.weight=iq6_k
blk\.[1-5][0-9]\.ffn_norm\.weight=iq6_k
blk\.60\.ffn_norm\.weight=iq6_k
blk\.[3-9]\.exp_probs_b\.bias=iq6_k
blk\.[1-5][0-9]\.exp_probs_b\.bias=iq6_k
blk\.60\.exp_probs_b\.bias=iq6_k
# Shared Experts (3-60)
blk\.[3-9]\.ffn_down_shexp\.weight=iq6_k
blk\.[1-5][0-9]\.ffn_down_shexp\.weight=iq6_k
blk\.60\.ffn_down_shexp\.weight=iq6_k
blk\.[3-9]\.ffn_(gate|up)_shexp\.weight=iq6_k
blk\.[1-5][0-9]\.ffn_(gate|up)_shexp\.weight=iq6_k
blk\.60\.ffn_(gate|up)_shexp\.weight=iq6_k
# The bulk of the model size is below
# Routed Experts (3-60)
# usually ffn_down is made a bit bigger than ffn_(gate|up) but you do you
blk\.[3-9]\.ffn_down_exps\.weight=iq4_ks
blk\.[1-5][0-9]\.ffn_down_exps\.weight=iq4_ks
blk\.60\.ffn_down_exps\.weight=iq4_ks
blk\.[3-9]\.ffn_(gate|up)_exps\.weight=iq4_ks
blk\.[1-5][0-9]\.ffn_(gate|up)_exps\.weight=iq4_ks
blk\.60\.ffn_(gate|up)_exps\.weight=iq4_ks
"
custom=$(
echo "$custom" | grep -v '^#' | \
sed -Ez 's:\n+:,:g;s:,$::;s:^,::'
)
./build/bin/llama-quantize \
--imatrix /mnt/models/ubergarm/DeepSeek-R1T-Chimera-GGUF/DeepSeek-R1T-Chimera.imatrix \
--custom-q "$custom" \
/media/b/data2/models/ubergarm/DeepSeek-R1T-Chimera-GGUF/DeepSeek-R1T-Chimera-256x21B-BF16-00001-of-00030.gguf \
/media/b/data2/models/ubergarm/DeepSeek-R1T-Chimera-GGUF/DeepSeek-R1T-Chimera-IQ4_KS.gguf \
IQ4_KS \
40
```
## imatrix
Based on [some discussions on imatrix
methodology](https://github.com/ikawrakow/ik_llama.cpp/issues/383#issuecomment-2878086261)
I chose the tried and true old school methodology using
default context length 512. This is one of the first imatrix
generated using the [updated imatrix calculation fix for
MLA](https://github.com/ikawrakow/ik_llama.cpp/pull/411) so went lower
than Q8_0 on attention tensors for this MLA quant (iq6_k) given the
discussions there and recent CUDA speed improvements.
👈 Imatrix Methodology
```
wget https://gist.githubusercontent.com/tristandruyen/9e207a95c7d75ddf37525d353e00659c/raw/571fda718462de863e5a0171078c175420c7649a/calibration_data_v5_rc.txt
numactl -N 0 -m 0 \
./build/bin/llama-imatrix \
--verbosity 1 \
-m /media/b/data2/models/ubergarm/DeepSeek-R1T-Chimera-GGUF/DeepSeek-R1T-Chimera-Q8_0.gguf \
-f calibration_data_v5_rc.txt \
-o DeepSeek-R1T-Chimera.imatrix \
--layer-similarity \
--ctx-size 512 \
--numa numactl \
--threads 40
# NOTE: I actually forgot --layer-similarity otherwise would publish that here. Sorry!
```
## References
* [ik_llama.cpp](https://github.com/ikawrakow/ik_llama.cpp/)
* [ik_llama.cpp Getting Started Guide](https://github.com/ikawrakow/ik_llama.cpp/discussions/258)
* [imatrix calibration_data_v5_rc.txt](https://gist.github.com/tristandruyen/9e207a95c7d75ddf37525d353e00659c#file-calibration_data_v5_rc-txt)