File size: 5,008 Bytes
7d40594 7076fac 7d40594 7076fac 7d40594 e128df8 7d40594 2fa0615 7d40594 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 |
---
library_name: transformers
tags:
- falcon-h1
license: other
license_name: falcon-llm-license
license_link: https://falconllm.tii.ae/falcon-terms-and-conditions.html
base_model: tiiuae/Falcon-H1-1.5B-Deep-Instruct
inference: true
---
<img src="https://huggingface.co/datasets/tiiuae/documentation-images/resolve/main/falcon_mamba/falcon-h1-logo.png" alt="drawing" width="800"/>
# Table of Contents
0. [TL;DR](#TL;DR)
1. [Model Details](#model-details)
2. [Training Details](#training-details)
3. [Usage](#usage)
4. [Evaluation](#evaluation)
5. [Citation](#citation)
# TL;DR
# Model Details
## Model Description
- **Developed by:** [https://www.tii.ae](https://www.tii.ae)
- **Model type:** Causal decoder-only
- **Architecture:** Hybrid Transformers + Mamba architecture
- **Language(s) (NLP):** English, Multilingual
- **License:** Falcon-LLM License
# Training details
For more details about the training protocol of this model, please refer to the [Falcon-H1 technical blogpost](https://falcon-lm.github.io/blog/falcon-h1/).
# Usage
Currently to use this model you can either rely on Hugging Face `transformers`, `vLLM` or our custom fork of `llama.cpp` library.
## Inference
Make sure to install the latest version of `transformers` or `vllm`, eventually install these packages from source:
```bash
pip install git+https://github.com/huggingface/transformers.git
```
Refer to [the official vLLM documentation for more details on building vLLM from source](https://docs.vllm.ai/en/latest/getting_started/installation/gpu.html#build-wheel-from-source).
### 🤗 transformers
Refer to the snippet below to run H1 models using 🤗 transformers:
```python
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_id = "tiiuae/Falcon-H1-1B-Base"
model = AutoModelForCausalLM.from_pretrained(
model_id,
torch_dtype=torch.bfloat16,
device_map="auto"
)
# Perform text generation
```
### vLLM
For vLLM, simply start a server by executing the command below:
```
# pip install vllm
vllm serve tiiuae/Falcon-H1-1B-Instruct --tensor-parallel-size 2 --data-parallel-size 1
```
### `llama.cpp`
While we are working on integrating our architecture directly into `llama.cpp` library, you can install our fork of the library and use it directly: https://github.com/tiiuae/llama.cpp-Falcon-H1
Use the same installing guidelines as `llama.cpp`.
# Evaluation
Falcon-H1 series perform very well on a variety of tasks, including reasoning tasks.
| Tasks | Falcon-H1-1.5B-deep | Qwen3-1.7B | Qwen2.5-1.5B | Gemma3-1B | Llama3.2-1B | Falcon3-1B |
| --- | --- | --- | --- | --- | --- | --- |
| **General** | | | | | |
| BBH | **54.43** | 35.18 | 42.41 | 35.86 | 33.21 | 34.47 |
| ARC-C | **43.86** | 34.81 | 40.53 | 34.13 | 34.64 | 43.09 |
| TruthfulQA | **50.48** | 49.39 | 47.05 | 42.17 | 42.08 | 42.31 |
| HellaSwag | **65.54** | 49.27 | 62.23 | 42.24 | 55.3 | 58.53 |
| MMLU | **66.11** | 57.04 | 59.76 | 40.87 | 45.93 | 46.1 |
| **Math** | | | | | |
| GSM8k | **82.34** | 69.83 | 57.47 | 42.38 | 44.28 | 44.05 |
| MATH-500 | **77.8** | 73.0 | 48.4 | 45.4 | 13.2 | 19.8 |
| AMC-23 | **56.56** | 46.09 | 24.06 | 19.22 | 7.19 | 6.87 |
| AIME-24 | **14.37** | 12.5 | 2.29 | 0.42 | 1.46 | 0.41 |
| AIME-25 | **11.04** | 8.12 | 1.25 | 1.25 | 0.0 | 0.21 |
| **Science** | | | | | |
| GPQA | **33.22** | 27.68 | 26.26 | 28.19 | 26.59 | 26.76 |
| GPQA_Diamond | **40.57** | 33.33 | 25.59 | 21.55 | 25.08 | 31.31 |
| MMLU-Pro | **41.89** | 23.54 | 28.35 | 14.46 | 16.2 | 18.49 |
| MMLU-stem | **67.3** | 54.3 | 54.04 | 35.39 | 39.16 | 39.64 |
| **Code** | | | | | |
| HumanEval | **73.78** | 67.68 | 56.1 | 40.85 | 34.15 | 22.56 |
| HumanEval+ | **68.9** | 60.96 | 50.61 | 37.2 | 29.88 | 20.73 |
| MBPP | **68.25** | 58.73 | 64.81 | 57.67 | 33.6 | 20.63 |
| MBPP+ | **56.61** | 49.74 | 56.08 | 50.0 | 29.37 | 17.2 |
| LiveCodeBench | **23.87** | 14.87 | 12.52 | 5.09 | 2.35 | 0.78 |
| CRUXEval | **52.32** | 18.88 | 34.76 | 12.7 | 0.06 | 15.58 |
| **Instruction Following** | | | | | |
| IFEval | **83.5** | 70.77 | 45.33 | 61.48 | 55.34 | 54.26 |
| Alpaca-Eval | **27.12** | 21.89 | 9.54 | 17.87 | 9.38 | 6.98 |
| MTBench | **8.53** | 7.61 | 7.1 | 7.03 | 6.37 | 6.03 |
| LiveBench | 36.83 | **40.73** | 21.65 | 18.79 | 14.97 | 14.1 |
You can check more in detail on our [our release blogpost](https://falcon-lm.github.io/blog/falcon-h1/), detailed benchmarks.
# Useful links
- View [our release blogpost](https://falcon-lm.github.io/blog/falcon-h1/).
- Feel free to join [our discord server](https://discord.gg/trwMYP9PYm) if you have any questions or to interact with our researchers and developers.
# Citation
If the Falcon-H1 family of models were helpful to your work, feel free to give us a cite.
```
@misc{tiifalconh1,
title = {Falcon-H1: A Family of Hybrid-Head Language Models Redefining Efficiency and Performance},
url = {https://falcon-lm.github.io/blog/falcon-h1},
author = {Falcon-LLM Team},
month = {May},
year = {2025}
}
``` |