|
from typing import Optional, Tuple, List, Union |
|
import torch |
|
from torch import nn |
|
import torch.nn.functional as F |
|
from transformers import PreTrainedModel, Cache, DynamicCache |
|
from transformers.activations import ACT2FN |
|
from transformers.modeling_attn_mask_utils import _prepare_4d_causal_attention_mask |
|
from transformers.modeling_outputs import MoeModelOutputWithPast, MoeCausalLMOutputWithPast |
|
from .configuration_sundial import SundialConfig |
|
from .ts_generation_mixin import TSGenerationMixin |
|
from .flow_loss import FlowLoss |
|
|
|
|
|
def rotate_half(x): |
|
x1 = x[..., : x.shape[-1] // 2] |
|
x2 = x[..., x.shape[-1] // 2:] |
|
return torch.cat((-x2, x1), dim=-1) |
|
|
|
|
|
def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1): |
|
cos = cos[position_ids].unsqueeze(unsqueeze_dim) |
|
sin = sin[position_ids].unsqueeze(unsqueeze_dim) |
|
q_embed = (q * cos) + (rotate_half(q) * sin) |
|
k_embed = (k * cos) + (rotate_half(k) * sin) |
|
return q_embed, k_embed |
|
|
|
|
|
class SundialPatchEmbedding(nn.Module): |
|
def __init__(self, config: SundialConfig): |
|
super().__init__() |
|
self.dropout = nn.Dropout(config.dropout_rate) |
|
self.hidden_layer = nn.Linear( |
|
config.input_token_len * 2, config.intermediate_size) |
|
self.act = ACT2FN[config.hidden_act] |
|
self.output_layer = nn.Linear( |
|
config.intermediate_size, config.hidden_size) |
|
self.residual_layer = nn.Linear( |
|
config.input_token_len * 2, config.hidden_size) |
|
self.input_token_len = config.input_token_len |
|
|
|
def forward(self, x): |
|
mask = torch.ones_like(x, dtype=torch.float32) |
|
input_length = x.shape[-1] |
|
padding_length = (self.input_token_len - (input_length % |
|
self.input_token_len)) % self.input_token_len |
|
x = F.pad(x, (padding_length, 0)) |
|
mask = F.pad(mask, (padding_length, 0)) |
|
x = x.unfold(dimension=-1, size=self.input_token_len, |
|
step=self.input_token_len) |
|
mask = mask.unfold( |
|
dimension=-1, size=self.input_token_len, step=self.input_token_len) |
|
|
|
x = torch.cat([x, mask], dim=-1) |
|
hid = self.act(self.hidden_layer(x)) |
|
out = self.dropout(self.output_layer(hid)) |
|
res = self.residual_layer(x) |
|
out = out + res |
|
return out |
|
|
|
|
|
class SundialRotaryEmbedding(torch.nn.Module): |
|
def __init__(self, dim, max_position_embeddings=10000, base=10000, device=None): |
|
super().__init__() |
|
self.dim = dim |
|
self.max_position_embeddings = max_position_embeddings |
|
self.base = base |
|
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, |
|
2, dtype=torch.int64).float().to(device) / self.dim)) |
|
self.register_buffer("inv_freq", inv_freq, persistent=False) |
|
|
|
|
|
self._set_cos_sin_cache( |
|
seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype() |
|
) |
|
|
|
def _set_cos_sin_cache(self, seq_len, device, dtype): |
|
self.max_seq_len_cached = seq_len |
|
t = torch.arange(self.max_seq_len_cached, device=device, |
|
dtype=torch.int64).type_as(self.inv_freq) |
|
|
|
freqs = torch.outer(t, self.inv_freq) |
|
|
|
emb = torch.cat((freqs, freqs), dim=-1) |
|
self.register_buffer( |
|
"cos_cached", emb.cos().to(dtype), persistent=False) |
|
self.register_buffer( |
|
"sin_cached", emb.sin().to(dtype), persistent=False) |
|
|
|
def forward(self, x, seq_len=None): |
|
|
|
if seq_len > self.max_seq_len_cached: |
|
self._set_cos_sin_cache( |
|
seq_len=seq_len, device=x.device, dtype=x.dtype) |
|
|
|
return ( |
|
self.cos_cached[:seq_len].to(dtype=x.dtype), |
|
self.sin_cached[:seq_len].to(dtype=x.dtype), |
|
) |
|
|
|
|
|
class SundialAttention(nn.Module): |
|
def __init__(self, config: SundialConfig, layer_idx: Optional[int] = None): |
|
super().__init__() |
|
self.layer_idx = layer_idx |
|
self.hidden_size = config.hidden_size |
|
self.num_heads = config.num_attention_heads |
|
self.head_dim = self.hidden_size // self.num_heads |
|
self.attention_dropout = config.dropout_rate |
|
self.q_proj = nn.Linear(self.hidden_size, self.hidden_size, bias=True) |
|
self.k_proj = nn.Linear(self.hidden_size, self.hidden_size, bias=True) |
|
self.v_proj = nn.Linear(self.hidden_size, self.hidden_size, bias=True) |
|
self.o_proj = nn.Linear(self.hidden_size, self.hidden_size, bias=False) |
|
self.rotary_emb = SundialRotaryEmbedding( |
|
self.head_dim, max_position_embeddings=config.max_position_embeddings) |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_value: Optional[Cache] = None, |
|
output_attentions: bool = False, |
|
**kwargs, |
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: |
|
bsz, q_len, _ = hidden_states.size() |
|
|
|
query_states = self.q_proj(hidden_states) |
|
key_states = self.k_proj(hidden_states) |
|
value_states = self.v_proj(hidden_states) |
|
|
|
query_states = query_states.view( |
|
bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) |
|
key_states = key_states.view( |
|
bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) |
|
value_states = value_states.view( |
|
bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) |
|
|
|
kv_seq_len = key_states.shape[-2] |
|
if past_key_value is not None: |
|
kv_seq_len += past_key_value.get_usable_length( |
|
kv_seq_len, self.layer_idx) |
|
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len) |
|
query_states, key_states = apply_rotary_pos_emb( |
|
query_states, key_states, cos, sin, position_ids) |
|
|
|
if past_key_value is not None: |
|
key_states, value_states = past_key_value.update( |
|
key_states, value_states, self.layer_idx) |
|
|
|
attn_output = F.scaled_dot_product_attention( |
|
query_states, key_states, value_states, attention_mask, dropout_p=(self.attention_dropout if self.training else 0.0)) |
|
|
|
attn_output = attn_output.transpose(1, 2).contiguous() |
|
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size) |
|
attn_output = self.o_proj(attn_output) |
|
|
|
if not output_attentions: |
|
attn_weights = None |
|
|
|
return attn_output, attn_weights, past_key_value |
|
|
|
|
|
class SundialMLP(nn.Module): |
|
def __init__(self, hidden_size: int, intermediate_size: int, hidden_act: str): |
|
super().__init__() |
|
self.hidden_size = hidden_size |
|
self.intermediate_size = intermediate_size |
|
self.gate_proj = nn.Linear( |
|
self.hidden_size, self.intermediate_size, bias=False) |
|
self.up_proj = nn.Linear( |
|
self.hidden_size, self.intermediate_size, bias=False) |
|
self.down_proj = nn.Linear( |
|
self.intermediate_size, self.hidden_size, bias=False) |
|
self.act_fn = ACT2FN[hidden_act] |
|
|
|
def forward(self, hidden_state): |
|
return self.down_proj(self.act_fn(self.gate_proj(hidden_state)) * self.up_proj(hidden_state)) |
|
|
|
|
|
class SundialDecoderLayer(nn.Module): |
|
def __init__(self, config: SundialConfig, layer_idx: int): |
|
super().__init__() |
|
self.self_attn = SundialAttention(config, layer_idx) |
|
|
|
self.ffn_layer = SundialMLP( |
|
hidden_size=config.hidden_size, |
|
intermediate_size=config.intermediate_size, |
|
hidden_act=config.hidden_act, |
|
) |
|
self.norm1 = torch.nn.LayerNorm(config.hidden_size) |
|
self.norm2 = torch.nn.LayerNorm(config.hidden_size) |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_value: Optional[Tuple[torch.Tensor]] = None, |
|
output_attentions: Optional[bool] = False, |
|
use_cache: Optional[bool] = False, |
|
**kwargs, |
|
) -> Tuple[torch.FloatTensor, torch.FloatTensor, Optional[torch.FloatTensor], Optional[torch.FloatTensor]]: |
|
residual = hidden_states |
|
|
|
hidden_states = self.norm1(hidden_states) |
|
|
|
|
|
hidden_states, self_attn_weights, present_key_value = self.self_attn( |
|
hidden_states=hidden_states, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_value=past_key_value, |
|
output_attentions=output_attentions, |
|
use_cache=use_cache, |
|
) |
|
hidden_states = residual + hidden_states |
|
|
|
|
|
residual = hidden_states |
|
hidden_states = self.norm2(hidden_states) |
|
hidden_states = self.ffn_layer(hidden_states) |
|
hidden_states = residual + hidden_states |
|
|
|
if not output_attentions: |
|
self_attn_weights = None |
|
|
|
if not use_cache: |
|
present_key_value = None |
|
return hidden_states, self_attn_weights, present_key_value |
|
|
|
|
|
class SundialPreTrainedModel(PreTrainedModel): |
|
config_class = SundialConfig |
|
base_model_prefix = "model" |
|
supports_gradient_checkpointing = True |
|
_no_split_modules = ["SundialDecoderLayer"] |
|
_skip_keys_device_placement = "past_key_values" |
|
_supports_flash_attn_2 = True |
|
_supports_sdpa = False |
|
_supports_cache_class = True |
|
|
|
def _init_weights(self, module): |
|
std = self.config.initializer_range |
|
if isinstance(module, torch.nn.Linear): |
|
module.weight.data.normal_(mean=0.0, std=std) |
|
if module.bias is not None: |
|
module.bias.data.zero_() |
|
elif isinstance(module, torch.nn.Embedding): |
|
module.weight.data.normal_(mean=0.0, std=std) |
|
if module.padding_idx is not None: |
|
module.weight.data[module.padding_idx].zero_() |
|
|
|
|
|
class SundialModel(SundialPreTrainedModel): |
|
def __init__(self, config: SundialConfig): |
|
super().__init__(config) |
|
self.embed_layer = SundialPatchEmbedding(config) |
|
self.layers = nn.ModuleList( |
|
[SundialDecoderLayer(config, layer_idx) |
|
for layer_idx in range(config.num_hidden_layers)] |
|
) |
|
self.norm = torch.nn.LayerNorm(config.hidden_size) |
|
self.gradient_checkpointing = False |
|
|
|
def forward( |
|
self, |
|
input_ids: torch.FloatTensor = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[List[torch.FloatTensor]] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple, MoeModelOutputWithPast]: |
|
|
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
use_cache = use_cache if use_cache is not None else self.config.use_cache |
|
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
|
|
if input_ids is not None and inputs_embeds is not None: |
|
raise ValueError( |
|
"You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time") |
|
elif input_ids is not None: |
|
batch_size, seq_length = input_ids.shape |
|
elif inputs_embeds is not None: |
|
batch_size, seq_length, _ = inputs_embeds.shape |
|
else: |
|
raise ValueError( |
|
"You have to specify either decoder_input_ids or decoder_inputs_embeds") |
|
|
|
if inputs_embeds is None: |
|
inputs_embeds = self.embed_layer(input_ids) |
|
seq_length = inputs_embeds.shape[1] |
|
|
|
if self.gradient_checkpointing and self.training: |
|
if use_cache: |
|
use_cache = False |
|
|
|
past_key_values_length = 0 |
|
|
|
if use_cache: |
|
use_legacy_cache = not isinstance(past_key_values, Cache) |
|
if use_legacy_cache: |
|
past_key_values = DynamicCache.from_legacy_cache( |
|
past_key_values) |
|
past_key_values_length = past_key_values.get_usable_length( |
|
seq_length) |
|
|
|
if position_ids is None: |
|
device = input_ids.device if input_ids is not None else inputs_embeds.device |
|
position_ids = torch.arange( |
|
past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device |
|
) |
|
|
|
position_ids = position_ids.view(-1, seq_length) |
|
else: |
|
position_ids = position_ids.view(-1, seq_length).long() |
|
|
|
|
|
attention_mask = _prepare_4d_causal_attention_mask( |
|
attention_mask, |
|
(batch_size, seq_length), |
|
inputs_embeds, |
|
past_key_values_length, |
|
sliding_window=None, |
|
) |
|
|
|
hidden_states = inputs_embeds |
|
|
|
|
|
all_hidden_states = () if output_hidden_states else None |
|
all_self_attns = () if output_attentions else None |
|
next_decoder_cache = None |
|
|
|
for decoder_layer in self.layers: |
|
if output_hidden_states: |
|
all_hidden_states += (hidden_states,) |
|
|
|
if self.gradient_checkpointing and self.training: |
|
layer_outputs = self._gradient_checkpointing_func( |
|
decoder_layer.__call__, |
|
hidden_states, |
|
attention_mask, |
|
position_ids, |
|
past_key_values, |
|
output_attentions, |
|
use_cache, |
|
) |
|
else: |
|
layer_outputs = decoder_layer( |
|
hidden_states, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_value=past_key_values, |
|
output_attentions=output_attentions, |
|
use_cache=use_cache, |
|
) |
|
|
|
hidden_states = layer_outputs[0] |
|
|
|
if output_attentions: |
|
all_self_attns += (layer_outputs[1],) |
|
|
|
if use_cache: |
|
next_decoder_cache = layer_outputs[2] |
|
|
|
hidden_states = self.norm(hidden_states) |
|
|
|
if output_hidden_states: |
|
all_hidden_states += (hidden_states,) |
|
|
|
next_cache = None |
|
if use_cache: |
|
next_cache = next_decoder_cache.to_legacy_cache( |
|
) if use_legacy_cache else next_decoder_cache |
|
|
|
if not return_dict: |
|
return tuple( |
|
v |
|
for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] |
|
if v is not None |
|
) |
|
return MoeModelOutputWithPast( |
|
last_hidden_state=hidden_states, |
|
past_key_values=next_cache, |
|
hidden_states=all_hidden_states, |
|
attentions=all_self_attns, |
|
) |
|
|
|
|
|
class SundialForPrediction(SundialPreTrainedModel, TSGenerationMixin): |
|
def __init__(self, config: SundialConfig): |
|
super().__init__(config) |
|
self.config = config |
|
self.model = SundialModel(self.config) |
|
self.flow_loss = FlowLoss(self.config.output_token_lens[-1], self.config.hidden_size, |
|
self.config.flow_loss_depth, self.config.hidden_size, self.config.num_sampling_steps) |
|
self.post_init() |
|
|
|
def set_decoder(self, decoder): |
|
self.model = decoder |
|
|
|
def get_decoder(self): |
|
return self.model |
|
|
|
def forward( |
|
self, |
|
input_ids: torch.FloatTensor = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[List[torch.FloatTensor]] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
labels: Optional[torch.FloatTensor] = None, |
|
loss_masks: Optional[torch.FloatTensor] = None, |
|
mask_y: Optional[torch.FloatTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
max_output_length: Optional[int] = None, |
|
revin: Optional[bool] = False, |
|
num_samples: Optional[int] = 1, |
|
) -> Union[Tuple, MoeCausalLMOutputWithPast]: |
|
|
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
if revin: |
|
means = input_ids.mean(1, keepdim=True).detach() |
|
stdev = input_ids.std(dim=1, keepdim=True, unbiased=False).detach() |
|
stdev = torch.where(stdev > 1e-2, stdev, torch.tensor(1.0, device=input_ids.device)) |
|
input_ids = (input_ids - means) / stdev |
|
outputs = self.model( |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_values=past_key_values, |
|
inputs_embeds=inputs_embeds, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
|
|
hidden_states = outputs[0] if not return_dict else outputs.last_hidden_state |
|
predictions = None |
|
|
|
loss = None |
|
if labels is not None: |
|
if revin: |
|
labels = (labels - means) / stdev |
|
output_token_len = self.config.output_token_lens[-1] |
|
seq_len = hidden_states.shape[1] * self.config.input_token_len |
|
labels = labels[:, :seq_len - |
|
self.config.input_token_len + output_token_len] |
|
shift_labels = labels.unfold( |
|
dimension=-1, size=output_token_len, step=self.config.input_token_len) |
|
|
|
bsz, L, _ = shift_labels.shape |
|
shift_labels = shift_labels.reshape( |
|
bsz * L, -1).repeat(self.config.diffusion_batch_mul, 1) |
|
hidden_states = hidden_states.reshape( |
|
bsz * L, -1).repeat(self.config.diffusion_batch_mul, 1) |
|
loss_masks = loss_masks.reshape( |
|
bsz * L).repeat(self.config.diffusion_batch_mul) |
|
mask_y = mask_y.repeat(L * self.config.diffusion_batch_mul, 1) |
|
|
|
loss = self.flow_loss(shift_labels, hidden_states, loss_masks, mask_y) |
|
else: |
|
if max_output_length is None: |
|
output_token_len = self.config.output_token_lens[0] |
|
max_output_length = output_token_len |
|
else: |
|
output_token_len = self.config.output_token_lens[0] |
|
for h in self.config.output_token_lens[1:]: |
|
if h > max_output_length: |
|
break |
|
else: |
|
output_token_len = h |
|
|
|
bsz = hidden_states.shape[0] |
|
hidden_states = hidden_states[:, -1, :] |
|
predictions = self.flow_loss.sample(hidden_states, num_samples) |
|
if output_token_len > max_output_length: |
|
predictions = predictions[:, :, :max_output_length] |
|
if revin: |
|
predictions = predictions * stdev + means |
|
if not return_dict: |
|
output = (predictions,) + outputs[1:] |
|
return (loss) + output if loss is not None else output |
|
|
|
return MoeCausalLMOutputWithPast( |
|
loss=loss, |
|
logits=predictions, |
|
past_key_values=outputs.past_key_values, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
) |
|
|
|
def prepare_inputs_for_generation( |
|
self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, revin=False, num_samples=1, **kwargs |
|
): |
|
|
|
if past_key_values is not None: |
|
if isinstance(past_key_values, Cache): |
|
cache_length = past_key_values.get_seq_length() |
|
if isinstance(past_key_values, DynamicCache): |
|
past_length = past_key_values.seen_tokens |
|
else: |
|
past_length = cache_length |
|
|
|
max_cache_length = past_key_values.get_max_length() |
|
else: |
|
cache_length = past_length = past_key_values[0][0].shape[2] |
|
max_cache_length = None |
|
|
|
|
|
|
|
|
|
|
|
if attention_mask is not None and attention_mask.shape[1] > (input_ids.shape[1] // self.config.input_token_len): |
|
input_ids = input_ids[:, - |
|
(attention_mask.shape[1] - past_length) * self.config.input_token_len:] |
|
|
|
|
|
elif past_length < (input_ids.shape[1] // self.config.input_token_len): |
|
input_ids = input_ids[:, past_length * |
|
self.config.input_token_len:] |
|
|
|
|
|
|
|
if ( |
|
max_cache_length is not None |
|
and attention_mask is not None |
|
and cache_length + (input_ids.shape[1] // self.config.input_token_len) > max_cache_length |
|
): |
|
attention_mask = attention_mask[:, -max_cache_length:] |
|
|
|
position_ids = kwargs.get("position_ids", None) |
|
if attention_mask is not None and position_ids is None: |
|
|
|
position_ids = attention_mask.long().cumsum(-1) - 1 |
|
position_ids.masked_fill_(attention_mask == 0, 1) |
|
if past_key_values: |
|
position_ids = position_ids[:, - |
|
(input_ids.shape[1] // self.config.input_token_len):] |
|
|
|
|
|
if inputs_embeds is not None and past_key_values is None: |
|
model_inputs = {"inputs_embeds": inputs_embeds} |
|
else: |
|
model_inputs = {"input_ids": input_ids} |
|
|
|
model_inputs.update( |
|
{ |
|
"position_ids": position_ids, |
|
"past_key_values": past_key_values, |
|
"use_cache": kwargs.get("use_cache"), |
|
"attention_mask": attention_mask, |
|
"revin": revin, |
|
"num_samples": num_samples, |
|
} |
|
) |
|
return model_inputs |
|
|