sundial-base-128m / modeling_sundial.py
hvlgo's picture
Upload SundialForPrediction
2f40c01 verified
from typing import Optional, Tuple, List, Union
import torch
from torch import nn
import torch.nn.functional as F
from transformers import PreTrainedModel, Cache, DynamicCache
from transformers.activations import ACT2FN
from transformers.modeling_attn_mask_utils import _prepare_4d_causal_attention_mask
from transformers.modeling_outputs import MoeModelOutputWithPast, MoeCausalLMOutputWithPast
from .configuration_sundial import SundialConfig
from .ts_generation_mixin import TSGenerationMixin
from .flow_loss import FlowLoss
def rotate_half(x):
x1 = x[..., : x.shape[-1] // 2]
x2 = x[..., x.shape[-1] // 2:]
return torch.cat((-x2, x1), dim=-1)
def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1):
cos = cos[position_ids].unsqueeze(unsqueeze_dim)
sin = sin[position_ids].unsqueeze(unsqueeze_dim)
q_embed = (q * cos) + (rotate_half(q) * sin)
k_embed = (k * cos) + (rotate_half(k) * sin)
return q_embed, k_embed
class SundialPatchEmbedding(nn.Module):
def __init__(self, config: SundialConfig):
super().__init__()
self.dropout = nn.Dropout(config.dropout_rate)
self.hidden_layer = nn.Linear(
config.input_token_len * 2, config.intermediate_size)
self.act = ACT2FN[config.hidden_act]
self.output_layer = nn.Linear(
config.intermediate_size, config.hidden_size)
self.residual_layer = nn.Linear(
config.input_token_len * 2, config.hidden_size)
self.input_token_len = config.input_token_len
def forward(self, x):
mask = torch.ones_like(x, dtype=torch.float32)
input_length = x.shape[-1]
padding_length = (self.input_token_len - (input_length %
self.input_token_len)) % self.input_token_len
x = F.pad(x, (padding_length, 0))
mask = F.pad(mask, (padding_length, 0))
x = x.unfold(dimension=-1, size=self.input_token_len,
step=self.input_token_len)
mask = mask.unfold(
dimension=-1, size=self.input_token_len, step=self.input_token_len)
x = torch.cat([x, mask], dim=-1)
hid = self.act(self.hidden_layer(x))
out = self.dropout(self.output_layer(hid))
res = self.residual_layer(x)
out = out + res
return out
class SundialRotaryEmbedding(torch.nn.Module):
def __init__(self, dim, max_position_embeddings=10000, base=10000, device=None):
super().__init__()
self.dim = dim
self.max_position_embeddings = max_position_embeddings
self.base = base
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim,
2, dtype=torch.int64).float().to(device) / self.dim))
self.register_buffer("inv_freq", inv_freq, persistent=False)
# Build here to make `torch.jit.trace` work.
self._set_cos_sin_cache(
seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype()
)
def _set_cos_sin_cache(self, seq_len, device, dtype):
self.max_seq_len_cached = seq_len
t = torch.arange(self.max_seq_len_cached, device=device,
dtype=torch.int64).type_as(self.inv_freq)
freqs = torch.outer(t, self.inv_freq)
# Different from paper, but it uses a different permutation in order to obtain the same calculation
emb = torch.cat((freqs, freqs), dim=-1)
self.register_buffer(
"cos_cached", emb.cos().to(dtype), persistent=False)
self.register_buffer(
"sin_cached", emb.sin().to(dtype), persistent=False)
def forward(self, x, seq_len=None):
# x: [bs, num_attention_heads, seq_len, head_size]
if seq_len > self.max_seq_len_cached:
self._set_cos_sin_cache(
seq_len=seq_len, device=x.device, dtype=x.dtype)
return (
self.cos_cached[:seq_len].to(dtype=x.dtype),
self.sin_cached[:seq_len].to(dtype=x.dtype),
)
class SundialAttention(nn.Module):
def __init__(self, config: SundialConfig, layer_idx: Optional[int] = None):
super().__init__()
self.layer_idx = layer_idx
self.hidden_size = config.hidden_size
self.num_heads = config.num_attention_heads
self.head_dim = self.hidden_size // self.num_heads
self.attention_dropout = config.dropout_rate
self.q_proj = nn.Linear(self.hidden_size, self.hidden_size, bias=True)
self.k_proj = nn.Linear(self.hidden_size, self.hidden_size, bias=True)
self.v_proj = nn.Linear(self.hidden_size, self.hidden_size, bias=True)
self.o_proj = nn.Linear(self.hidden_size, self.hidden_size, bias=False)
self.rotary_emb = SundialRotaryEmbedding(
self.head_dim, max_position_embeddings=config.max_position_embeddings)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: bool = False,
**kwargs,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
bsz, q_len, _ = hidden_states.size()
query_states = self.q_proj(hidden_states)
key_states = self.k_proj(hidden_states)
value_states = self.v_proj(hidden_states)
query_states = query_states.view(
bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
key_states = key_states.view(
bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
value_states = value_states.view(
bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
kv_seq_len = key_states.shape[-2]
if past_key_value is not None:
kv_seq_len += past_key_value.get_usable_length(
kv_seq_len, self.layer_idx)
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
query_states, key_states = apply_rotary_pos_emb(
query_states, key_states, cos, sin, position_ids)
if past_key_value is not None:
key_states, value_states = past_key_value.update(
key_states, value_states, self.layer_idx)
attn_output = F.scaled_dot_product_attention(
query_states, key_states, value_states, attention_mask, dropout_p=(self.attention_dropout if self.training else 0.0))
attn_output = attn_output.transpose(1, 2).contiguous()
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
attn_output = self.o_proj(attn_output)
if not output_attentions:
attn_weights = None
return attn_output, attn_weights, past_key_value
class SundialMLP(nn.Module):
def __init__(self, hidden_size: int, intermediate_size: int, hidden_act: str):
super().__init__()
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.gate_proj = nn.Linear(
self.hidden_size, self.intermediate_size, bias=False)
self.up_proj = nn.Linear(
self.hidden_size, self.intermediate_size, bias=False)
self.down_proj = nn.Linear(
self.intermediate_size, self.hidden_size, bias=False)
self.act_fn = ACT2FN[hidden_act]
def forward(self, hidden_state):
return self.down_proj(self.act_fn(self.gate_proj(hidden_state)) * self.up_proj(hidden_state))
class SundialDecoderLayer(nn.Module):
def __init__(self, config: SundialConfig, layer_idx: int):
super().__init__()
self.self_attn = SundialAttention(config, layer_idx)
self.ffn_layer = SundialMLP(
hidden_size=config.hidden_size,
intermediate_size=config.intermediate_size,
hidden_act=config.hidden_act,
)
self.norm1 = torch.nn.LayerNorm(config.hidden_size)
self.norm2 = torch.nn.LayerNorm(config.hidden_size)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: Optional[bool] = False,
use_cache: Optional[bool] = False,
**kwargs,
) -> Tuple[torch.FloatTensor, torch.FloatTensor, Optional[torch.FloatTensor], Optional[torch.FloatTensor]]:
residual = hidden_states
hidden_states = self.norm1(hidden_states)
# Self Attention
hidden_states, self_attn_weights, present_key_value = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
)
hidden_states = residual + hidden_states
# Fully Connected
residual = hidden_states
hidden_states = self.norm2(hidden_states)
hidden_states = self.ffn_layer(hidden_states)
hidden_states = residual + hidden_states
if not output_attentions:
self_attn_weights = None
if not use_cache:
present_key_value = None
return hidden_states, self_attn_weights, present_key_value
class SundialPreTrainedModel(PreTrainedModel):
config_class = SundialConfig
base_model_prefix = "model"
supports_gradient_checkpointing = True
_no_split_modules = ["SundialDecoderLayer"]
_skip_keys_device_placement = "past_key_values"
_supports_flash_attn_2 = True
_supports_sdpa = False
_supports_cache_class = True
def _init_weights(self, module):
std = self.config.initializer_range
if isinstance(module, torch.nn.Linear):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, torch.nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
class SundialModel(SundialPreTrainedModel):
def __init__(self, config: SundialConfig):
super().__init__(config)
self.embed_layer = SundialPatchEmbedding(config)
self.layers = nn.ModuleList(
[SundialDecoderLayer(config, layer_idx)
for layer_idx in range(config.num_hidden_layers)]
)
self.norm = torch.nn.LayerNorm(config.hidden_size)
self.gradient_checkpointing = False
def forward(
self,
input_ids: torch.FloatTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, MoeModelOutputWithPast]:
# input_ids is the input of time series, its shape is [batch_size, seq_len]
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# retrieve input_ids and inputs_embeds
if input_ids is not None and inputs_embeds is not None:
raise ValueError(
"You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
elif input_ids is not None:
batch_size, seq_length = input_ids.shape
elif inputs_embeds is not None:
batch_size, seq_length, _ = inputs_embeds.shape
else:
raise ValueError(
"You have to specify either decoder_input_ids or decoder_inputs_embeds")
if inputs_embeds is None:
inputs_embeds = self.embed_layer(input_ids)
seq_length = inputs_embeds.shape[1]
if self.gradient_checkpointing and self.training:
if use_cache:
use_cache = False
past_key_values_length = 0
if use_cache:
use_legacy_cache = not isinstance(past_key_values, Cache)
if use_legacy_cache:
past_key_values = DynamicCache.from_legacy_cache(
past_key_values)
past_key_values_length = past_key_values.get_usable_length(
seq_length)
if position_ids is None:
device = input_ids.device if input_ids is not None else inputs_embeds.device
position_ids = torch.arange(
past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
)
# position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
position_ids = position_ids.view(-1, seq_length)
else:
position_ids = position_ids.view(-1, seq_length).long()
# 4d mask is passed through the layers
attention_mask = _prepare_4d_causal_attention_mask(
attention_mask,
(batch_size, seq_length),
inputs_embeds,
past_key_values_length,
sliding_window=None,
)
hidden_states = inputs_embeds
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
next_decoder_cache = None
for decoder_layer in self.layers:
if output_hidden_states:
all_hidden_states += (hidden_states,)
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
decoder_layer.__call__,
hidden_states,
attention_mask,
position_ids,
past_key_values,
output_attentions,
use_cache,
)
else:
layer_outputs = decoder_layer(
hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_values,
output_attentions=output_attentions,
use_cache=use_cache,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_self_attns += (layer_outputs[1],)
if use_cache:
next_decoder_cache = layer_outputs[2]
hidden_states = self.norm(hidden_states)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
next_cache = None
if use_cache:
next_cache = next_decoder_cache.to_legacy_cache(
) if use_legacy_cache else next_decoder_cache
if not return_dict:
return tuple(
v
for v in [hidden_states, next_cache, all_hidden_states, all_self_attns]
if v is not None
)
return MoeModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=next_cache,
hidden_states=all_hidden_states,
attentions=all_self_attns,
)
class SundialForPrediction(SundialPreTrainedModel, TSGenerationMixin):
def __init__(self, config: SundialConfig):
super().__init__(config)
self.config = config
self.model = SundialModel(self.config)
self.flow_loss = FlowLoss(self.config.output_token_lens[-1], self.config.hidden_size,
self.config.flow_loss_depth, self.config.hidden_size, self.config.num_sampling_steps)
self.post_init()
def set_decoder(self, decoder):
self.model = decoder
def get_decoder(self):
return self.model
def forward(
self,
input_ids: torch.FloatTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.FloatTensor] = None,
loss_masks: Optional[torch.FloatTensor] = None,
mask_y: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
max_output_length: Optional[int] = None,
revin: Optional[bool] = False,
num_samples: Optional[int] = 1,
) -> Union[Tuple, MoeCausalLMOutputWithPast]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if revin:
means = input_ids.mean(1, keepdim=True).detach()
stdev = input_ids.std(dim=1, keepdim=True, unbiased=False).detach()
stdev = torch.where(stdev > 1e-2, stdev, torch.tensor(1.0, device=input_ids.device))
input_ids = (input_ids - means) / stdev
outputs = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = outputs[0] if not return_dict else outputs.last_hidden_state
predictions = None
loss = None
if labels is not None:
if revin:
labels = (labels - means) / stdev
output_token_len = self.config.output_token_lens[-1]
seq_len = hidden_states.shape[1] * self.config.input_token_len
labels = labels[:, :seq_len -
self.config.input_token_len + output_token_len]
shift_labels = labels.unfold(
dimension=-1, size=output_token_len, step=self.config.input_token_len)
bsz, L, _ = shift_labels.shape
shift_labels = shift_labels.reshape(
bsz * L, -1).repeat(self.config.diffusion_batch_mul, 1)
hidden_states = hidden_states.reshape(
bsz * L, -1).repeat(self.config.diffusion_batch_mul, 1)
loss_masks = loss_masks.reshape(
bsz * L).repeat(self.config.diffusion_batch_mul)
mask_y = mask_y.repeat(L * self.config.diffusion_batch_mul, 1)
loss = self.flow_loss(shift_labels, hidden_states, loss_masks, mask_y)
else:
if max_output_length is None:
output_token_len = self.config.output_token_lens[0]
max_output_length = output_token_len
else:
output_token_len = self.config.output_token_lens[0]
for h in self.config.output_token_lens[1:]:
if h > max_output_length:
break
else:
output_token_len = h
bsz = hidden_states.shape[0]
hidden_states = hidden_states[:, -1, :]
predictions = self.flow_loss.sample(hidden_states, num_samples)
if output_token_len > max_output_length:
predictions = predictions[:, :, :max_output_length]
if revin:
predictions = predictions * stdev + means
if not return_dict:
output = (predictions,) + outputs[1:]
return (loss) + output if loss is not None else output
return MoeCausalLMOutputWithPast(
loss=loss,
logits=predictions,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def prepare_inputs_for_generation(
self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, revin=False, num_samples=1, **kwargs
):
# Omit tokens covered by past_key_values
if past_key_values is not None:
if isinstance(past_key_values, Cache):
cache_length = past_key_values.get_seq_length()
if isinstance(past_key_values, DynamicCache):
past_length = past_key_values.seen_tokens
else:
past_length = cache_length
max_cache_length = past_key_values.get_max_length()
else:
cache_length = past_length = past_key_values[0][0].shape[2]
max_cache_length = None
# Keep only the unprocessed tokens:
# 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
# some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as
# input)
if attention_mask is not None and attention_mask.shape[1] > (input_ids.shape[1] // self.config.input_token_len):
input_ids = input_ids[:, -
(attention_mask.shape[1] - past_length) * self.config.input_token_len:]
# 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
# input_ids based on the past_length.
elif past_length < (input_ids.shape[1] // self.config.input_token_len):
input_ids = input_ids[:, past_length *
self.config.input_token_len:]
# 3 - Otherwise (past_length >= (input_ids.shape[1] // self.config.input_token_len)), let's assume input_ids only has unprocessed tokens.
# If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
if (
max_cache_length is not None
and attention_mask is not None
and cache_length + (input_ids.shape[1] // self.config.input_token_len) > max_cache_length
):
attention_mask = attention_mask[:, -max_cache_length:]
position_ids = kwargs.get("position_ids", None)
if attention_mask is not None and position_ids is None:
# create position_ids on the fly for batch generation
position_ids = attention_mask.long().cumsum(-1) - 1
position_ids.masked_fill_(attention_mask == 0, 1)
if past_key_values:
position_ids = position_ids[:, -
(input_ids.shape[1] // self.config.input_token_len):]
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
if inputs_embeds is not None and past_key_values is None:
model_inputs = {"inputs_embeds": inputs_embeds}
else:
model_inputs = {"input_ids": input_ids}
model_inputs.update(
{
"position_ids": position_ids,
"past_key_values": past_key_values,
"use_cache": kwargs.get("use_cache"),
"attention_mask": attention_mask,
"revin": revin,
"num_samples": num_samples,
}
)
return model_inputs