|
from typing import List |
|
from transformers import PretrainedConfig |
|
|
|
|
|
class SundialConfig(PretrainedConfig): |
|
model_type = "sundial" |
|
keys_to_ignore_at_inference = ["past_key_values"] |
|
|
|
def __init__( |
|
self, |
|
input_token_len: int = 16, |
|
hidden_size: int = 768, |
|
intermediate_size: int = 3072, |
|
output_token_lens: List[int] = [720], |
|
num_hidden_layers: int = 12, |
|
num_attention_heads: int = 12, |
|
hidden_act: str = "silu", |
|
use_cache: bool = True, |
|
rope_theta: int = 10000, |
|
dropout_rate: float = 0.1, |
|
initializer_range: float = 0.02, |
|
max_position_embeddings: int = 10000, |
|
flow_loss_depth: int = 3, |
|
num_sampling_steps: int = 50, |
|
diffusion_batch_mul: int = 4, |
|
**kwargs, |
|
): |
|
self.input_token_len = input_token_len |
|
self.hidden_size = hidden_size |
|
self.intermediate_size = intermediate_size |
|
self.num_hidden_layers = num_hidden_layers |
|
self.num_attention_heads = num_attention_heads |
|
self.hidden_act = hidden_act |
|
self.output_token_lens = output_token_lens |
|
self.use_cache = use_cache |
|
self.rope_theta = rope_theta |
|
self.dropout_rate = dropout_rate |
|
self.initializer_range = initializer_range |
|
self.max_position_embeddings = max_position_embeddings |
|
self.flow_loss_depth = flow_loss_depth |
|
self.num_sampling_steps = num_sampling_steps |
|
self.diffusion_batch_mul = diffusion_batch_mul |
|
|
|
super().__init__( |
|
**kwargs, |
|
) |
|
|