thucdangvan020999 commited on
Commit
ab488df
·
verified ·
1 Parent(s): 6cb5a54

Updated text_model_id in config.json

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,142 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - ar
4
+ - be
5
+ - bg
6
+ - bn
7
+ - cs
8
+ - cy
9
+ - da
10
+ - de
11
+ - el
12
+ - en
13
+ - es
14
+ - et
15
+ - fa
16
+ - fi
17
+ - fr
18
+ - gl
19
+ - hi
20
+ - hu
21
+ - it
22
+ - ja
23
+ - ka
24
+ - lt
25
+ - lv
26
+ - mk
27
+ - mr
28
+ - nl
29
+ - pl
30
+ - pt
31
+ - ro
32
+ - ru
33
+ - sk
34
+ - sl
35
+ - sr
36
+ - sv
37
+ - sw
38
+ - ta
39
+ - th
40
+ - tr
41
+ - uk
42
+ - ur
43
+ - vi
44
+ - zh
45
+ library_name: transformers
46
+ license: mit
47
+ metrics:
48
+ - bleu
49
+ pipeline_tag: audio-text-to-text
50
+ ---
51
+
52
+ # Model Card for Ultravox
53
+
54
+ Ultravox is a multimodal Speech LLM built around a pretrained [Llama3.2-1B-Instruct](https://huggingface.co/meta-llama/Llama-3.2-1B) and [whisper-large-v3-turbo](https://huggingface.co/openai/whisper-large-v3-turbo) backbone.
55
+
56
+ See https://ultravox.ai for the GitHub repo and more information.
57
+
58
+
59
+ ## Model Details
60
+
61
+ ### Model Description
62
+
63
+ Ultravox is a multimodal model that can consume both speech and text as input (e.g., a text system prompt and voice user message).
64
+ The input to the model is given as a text prompt with a special `<|audio|>` pseudo-token, and the model processor will replace this magic token with embeddings derived from the input audio.
65
+ Using the merged embeddings as input, the model will then generate output text as usual.
66
+
67
+ In a future revision of Ultravox, we plan to expand the token vocabulary to support generation of semantic and acoustic audio tokens, which can then be fed to a vocoder to produce voice output.
68
+ No preference tuning has been applied to this revision of the model.
69
+
70
+ - **Developed by:** Fixie.ai
71
+ - **License:** MIT
72
+
73
+ ### Model Sources
74
+
75
+ - **Repository:** https://ultravox.ai
76
+ - **Demo:** See repo
77
+
78
+ ## Usage
79
+
80
+ Think of the model as an LLM that can also hear and understand speech. As such, it can be used as a voice agent, and also to do speech-to-speech translation, analysis of spoken audio, etc.
81
+
82
+ To use the model, try the following:
83
+ ```python
84
+ # pip install transformers peft librosa
85
+
86
+ import transformers
87
+ import numpy as np
88
+ import librosa
89
+
90
+ pipe = transformers.pipeline(model='fixie-ai/ultravox-v0_5-llama-3_2-1b', trust_remote_code=True)
91
+
92
+ path = "<path-to-input-audio>" # TODO: pass the audio here
93
+ audio, sr = librosa.load(path, sr=16000)
94
+
95
+
96
+ turns = [
97
+ {
98
+ "role": "system",
99
+ "content": "You are a friendly and helpful character. You love to answer questions for people."
100
+ },
101
+ ]
102
+ pipe({'audio': audio, 'turns': turns, 'sampling_rate': sr}, max_new_tokens=30)
103
+ ```
104
+
105
+
106
+ ## Training Details
107
+
108
+ The model uses a pre-trained [Llama3.2-1B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.2-1B) backbone as well as the encoder part of [whisper-large-v3-turbo](https://huggingface.co/openai/whisper-large-v3-turbo).
109
+
110
+ The multi-modal adapter is trained, the Whisper encoder is fine-tuned, while the Llama model is kept frozen.
111
+
112
+ We use a knowledge-distillation loss where Ultravox is trying to match the logits of the text-based Llama backbone.
113
+
114
+ ### Training Data
115
+
116
+ The training dataset is a mix of ASR datasets, extended with continuations generated by Llama 3.1 8B, and speech translation datasets, which yield a modest improvement in translation evaluations.
117
+
118
+ ### Training Procedure
119
+
120
+ Supervised speech instruction finetuning via knowledge-distillation. For more info, see [training code in Ultravox repo](https://github.com/fixie-ai/ultravox/blob/main/ultravox/training/train.py).
121
+
122
+
123
+ #### Training Hyperparameters
124
+
125
+ - **Training regime:** BF16 mixed precision training
126
+ - **Hardward used:** 8x H100 GPUs
127
+
128
+ #### Speeds, Sizes, Times
129
+
130
+ Check out the audio tab on [TheFastest.ai](https://thefastest.ai/?m=audio) for daily benchmarks and a comparison with other existing models.
131
+
132
+ ## Evaluation
133
+
134
+ | | **Ultravox 0.5 1b**| Ultravox 0.5 8B | Ultravox 0.5 70B |
135
+ | --- | ---: | ---: | ---: |
136
+ | **covost2 en_ar** | 1.55 | 12.99 | 20.21 |
137
+ | **covost2 en_ca** | 8.06 | 31.54 | 40.01 |
138
+ | **covost2 en_de** | 14.21 | 28.70 | 34.53 |
139
+ | **covost2 es_en** | 24.97 | 40.19 | 43.29 |
140
+ | **covost2 ru_en** | 24.12 | 42.13 | 48.99 |
141
+ | **covost2 zh_en** | 4.76 | 17.22 | 21.37 |
142
+ | **big bench audio**| 39.14 | 66.54 | 82.70 |
config.json ADDED
@@ -0,0 +1,79 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "/Users/zhuang/repos/ultravox-omni/artifacts/model-zhuang.2025-01-08-v0_5.llama3_2-1b-4a.246352f:v8",
3
+ "architectures": [
4
+ "UltravoxModel"
5
+ ],
6
+ "audio_config": {
7
+ "_name_or_path": "openai/whisper-large-v3-turbo",
8
+ "activation_dropout": 0.0,
9
+ "activation_function": "gelu",
10
+ "apply_spec_augment": false,
11
+ "architectures": [
12
+ "WhisperForConditionalGeneration"
13
+ ],
14
+ "attention_dropout": 0.0,
15
+ "begin_suppress_tokens": [
16
+ 220,
17
+ 50256
18
+ ],
19
+ "bos_token_id": 50257,
20
+ "d_model": 1280,
21
+ "decoder_attention_heads": 20,
22
+ "decoder_ffn_dim": 5120,
23
+ "decoder_layerdrop": 0.0,
24
+ "decoder_layers": 4,
25
+ "decoder_start_token_id": 50258,
26
+ "dropout": 0.0,
27
+ "encoder_attention_heads": 20,
28
+ "encoder_ffn_dim": 5120,
29
+ "encoder_layerdrop": 0.0,
30
+ "encoder_layers": 32,
31
+ "eos_token_id": 50257,
32
+ "init_std": 0.02,
33
+ "is_encoder_decoder": true,
34
+ "max_source_positions": 1500,
35
+ "max_target_positions": 448,
36
+ "median_filter_width": 7,
37
+ "model_type": "whisper",
38
+ "num_hidden_layers": 32,
39
+ "num_mel_bins": 128,
40
+ "pad_token_id": 50257,
41
+ "scale_embedding": false,
42
+ "torch_dtype": "float16",
43
+ "use_cache": true,
44
+ "vocab_size": 51866
45
+ },
46
+ "audio_latency_block_size": null,
47
+ "audio_model_id": null,
48
+ "auto_map": {
49
+ "AutoConfig": "ultravox_config.UltravoxConfig",
50
+ "AutoModel": "ultravox_model.UltravoxModel",
51
+ "AutoProcessor": "ultravox_processing.UltravoxProcessor"
52
+ },
53
+ "custom_pipelines": {
54
+ "ultravox-pipeline": {
55
+ "impl": "ultravox_pipeline.UltravoxPipeline",
56
+ "pt": [
57
+ "AutoModel"
58
+ ],
59
+ "tf": [],
60
+ "type": "multimodal"
61
+ }
62
+ },
63
+ "hidden_size": 4096,
64
+ "ignore_index": -100,
65
+ "initializer_range": 0.02,
66
+ "model_type": "ultravox",
67
+ "norm_init": 0.4,
68
+ "pad_token_id": 128009,
69
+ "projector_act": "swiglu",
70
+ "projector_ln_mid": true,
71
+ "stack_factor": 8,
72
+ "text_model_id": "ReasoningShield/ReasoningShield-1B",
73
+ "torch_dtype": "bfloat16",
74
+ "transformers_version": "4.48.1",
75
+ "num_attention_heads": 32,
76
+ "num_hidden_layers": 16,
77
+ "vocab_size": 128256,
78
+ "audio_token_index": 128256
79
+ }
generation_config.json ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 128000,
4
+ "eos_token_id": [
5
+ 128001,
6
+ 128008,
7
+ 128009
8
+ ],
9
+ "pad_token_id": 128009,
10
+ "transformers_version": "4.48.1"
11
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f3a3bf7e9137f3219a0d27ba71668deeee8c60aaf0ea587b48d8f71178763f31
3
+ size 1366293736
preprocessor_config.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "chunk_length": 30,
3
+ "feature_extractor_type": "WhisperFeatureExtractor",
4
+ "feature_size": 80,
5
+ "hop_length": 160,
6
+ "n_fft": 400,
7
+ "n_samples": 480000,
8
+ "nb_max_frames": 3000,
9
+ "padding_side": "right",
10
+ "padding_value": 0.0,
11
+ "processor_class": "WhisperProcessor",
12
+ "return_attention_mask": false,
13
+ "sampling_rate": 16000
14
+ }
processor_config.json ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "audio_context_size": 3000,
3
+ "audio_padding": "longest",
4
+ "audio_placeholder": "<|audio|>",
5
+ "auto_map": {
6
+ "AutoProcessor": "ultravox_processing.UltravoxProcessor"
7
+ },
8
+ "encoder_ds_factor": 2,
9
+ "processor_class": "UltravoxProcessor",
10
+ "stack_factor": 8
11
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ {
4
+ "content": "<|audio|>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false
9
+ }
10
+ ],
11
+ "bos_token": {
12
+ "content": "<|begin_of_text|>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false
17
+ },
18
+ "eos_token": {
19
+ "content": "<|eot_id|>",
20
+ "lstrip": false,
21
+ "normalized": false,
22
+ "rstrip": false,
23
+ "single_word": false
24
+ },
25
+ "pad_token": {
26
+ "content": "<|eot_id|>",
27
+ "lstrip": false,
28
+ "normalized": false,
29
+ "rstrip": false,
30
+ "single_word": false
31
+ }
32
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e87771bfea74770d36a1432b5f9ba6d7f611d33fb63681d10c2479540c1591f8
3
+ size 17210106
tokenizer_config.json ADDED
@@ -0,0 +1,2075 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "128000": {
4
+ "content": "<|begin_of_text|>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "128001": {
12
+ "content": "<|end_of_text|>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "128002": {
20
+ "content": "<|reserved_special_token_0|>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "128003": {
28
+ "content": "<|reserved_special_token_1|>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "128004": {
36
+ "content": "<|finetune_right_pad_id|>",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ },
43
+ "128005": {
44
+ "content": "<|reserved_special_token_2|>",
45
+ "lstrip": false,
46
+ "normalized": false,
47
+ "rstrip": false,
48
+ "single_word": false,
49
+ "special": true
50
+ },
51
+ "128006": {
52
+ "content": "<|start_header_id|>",
53
+ "lstrip": false,
54
+ "normalized": false,
55
+ "rstrip": false,
56
+ "single_word": false,
57
+ "special": true
58
+ },
59
+ "128007": {
60
+ "content": "<|end_header_id|>",
61
+ "lstrip": false,
62
+ "normalized": false,
63
+ "rstrip": false,
64
+ "single_word": false,
65
+ "special": true
66
+ },
67
+ "128008": {
68
+ "content": "<|eom_id|>",
69
+ "lstrip": false,
70
+ "normalized": false,
71
+ "rstrip": false,
72
+ "single_word": false,
73
+ "special": true
74
+ },
75
+ "128009": {
76
+ "content": "<|eot_id|>",
77
+ "lstrip": false,
78
+ "normalized": false,
79
+ "rstrip": false,
80
+ "single_word": false,
81
+ "special": true
82
+ },
83
+ "128010": {
84
+ "content": "<|python_tag|>",
85
+ "lstrip": false,
86
+ "normalized": false,
87
+ "rstrip": false,
88
+ "single_word": false,
89
+ "special": true
90
+ },
91
+ "128011": {
92
+ "content": "<|reserved_special_token_3|>",
93
+ "lstrip": false,
94
+ "normalized": false,
95
+ "rstrip": false,
96
+ "single_word": false,
97
+ "special": true
98
+ },
99
+ "128012": {
100
+ "content": "<|reserved_special_token_4|>",
101
+ "lstrip": false,
102
+ "normalized": false,
103
+ "rstrip": false,
104
+ "single_word": false,
105
+ "special": true
106
+ },
107
+ "128013": {
108
+ "content": "<|reserved_special_token_5|>",
109
+ "lstrip": false,
110
+ "normalized": false,
111
+ "rstrip": false,
112
+ "single_word": false,
113
+ "special": true
114
+ },
115
+ "128014": {
116
+ "content": "<|reserved_special_token_6|>",
117
+ "lstrip": false,
118
+ "normalized": false,
119
+ "rstrip": false,
120
+ "single_word": false,
121
+ "special": true
122
+ },
123
+ "128015": {
124
+ "content": "<|reserved_special_token_7|>",
125
+ "lstrip": false,
126
+ "normalized": false,
127
+ "rstrip": false,
128
+ "single_word": false,
129
+ "special": true
130
+ },
131
+ "128016": {
132
+ "content": "<|reserved_special_token_8|>",
133
+ "lstrip": false,
134
+ "normalized": false,
135
+ "rstrip": false,
136
+ "single_word": false,
137
+ "special": true
138
+ },
139
+ "128017": {
140
+ "content": "<|reserved_special_token_9|>",
141
+ "lstrip": false,
142
+ "normalized": false,
143
+ "rstrip": false,
144
+ "single_word": false,
145
+ "special": true
146
+ },
147
+ "128018": {
148
+ "content": "<|reserved_special_token_10|>",
149
+ "lstrip": false,
150
+ "normalized": false,
151
+ "rstrip": false,
152
+ "single_word": false,
153
+ "special": true
154
+ },
155
+ "128019": {
156
+ "content": "<|reserved_special_token_11|>",
157
+ "lstrip": false,
158
+ "normalized": false,
159
+ "rstrip": false,
160
+ "single_word": false,
161
+ "special": true
162
+ },
163
+ "128020": {
164
+ "content": "<|reserved_special_token_12|>",
165
+ "lstrip": false,
166
+ "normalized": false,
167
+ "rstrip": false,
168
+ "single_word": false,
169
+ "special": true
170
+ },
171
+ "128021": {
172
+ "content": "<|reserved_special_token_13|>",
173
+ "lstrip": false,
174
+ "normalized": false,
175
+ "rstrip": false,
176
+ "single_word": false,
177
+ "special": true
178
+ },
179
+ "128022": {
180
+ "content": "<|reserved_special_token_14|>",
181
+ "lstrip": false,
182
+ "normalized": false,
183
+ "rstrip": false,
184
+ "single_word": false,
185
+ "special": true
186
+ },
187
+ "128023": {
188
+ "content": "<|reserved_special_token_15|>",
189
+ "lstrip": false,
190
+ "normalized": false,
191
+ "rstrip": false,
192
+ "single_word": false,
193
+ "special": true
194
+ },
195
+ "128024": {
196
+ "content": "<|reserved_special_token_16|>",
197
+ "lstrip": false,
198
+ "normalized": false,
199
+ "rstrip": false,
200
+ "single_word": false,
201
+ "special": true
202
+ },
203
+ "128025": {
204
+ "content": "<|reserved_special_token_17|>",
205
+ "lstrip": false,
206
+ "normalized": false,
207
+ "rstrip": false,
208
+ "single_word": false,
209
+ "special": true
210
+ },
211
+ "128026": {
212
+ "content": "<|reserved_special_token_18|>",
213
+ "lstrip": false,
214
+ "normalized": false,
215
+ "rstrip": false,
216
+ "single_word": false,
217
+ "special": true
218
+ },
219
+ "128027": {
220
+ "content": "<|reserved_special_token_19|>",
221
+ "lstrip": false,
222
+ "normalized": false,
223
+ "rstrip": false,
224
+ "single_word": false,
225
+ "special": true
226
+ },
227
+ "128028": {
228
+ "content": "<|reserved_special_token_20|>",
229
+ "lstrip": false,
230
+ "normalized": false,
231
+ "rstrip": false,
232
+ "single_word": false,
233
+ "special": true
234
+ },
235
+ "128029": {
236
+ "content": "<|reserved_special_token_21|>",
237
+ "lstrip": false,
238
+ "normalized": false,
239
+ "rstrip": false,
240
+ "single_word": false,
241
+ "special": true
242
+ },
243
+ "128030": {
244
+ "content": "<|reserved_special_token_22|>",
245
+ "lstrip": false,
246
+ "normalized": false,
247
+ "rstrip": false,
248
+ "single_word": false,
249
+ "special": true
250
+ },
251
+ "128031": {
252
+ "content": "<|reserved_special_token_23|>",
253
+ "lstrip": false,
254
+ "normalized": false,
255
+ "rstrip": false,
256
+ "single_word": false,
257
+ "special": true
258
+ },
259
+ "128032": {
260
+ "content": "<|reserved_special_token_24|>",
261
+ "lstrip": false,
262
+ "normalized": false,
263
+ "rstrip": false,
264
+ "single_word": false,
265
+ "special": true
266
+ },
267
+ "128033": {
268
+ "content": "<|reserved_special_token_25|>",
269
+ "lstrip": false,
270
+ "normalized": false,
271
+ "rstrip": false,
272
+ "single_word": false,
273
+ "special": true
274
+ },
275
+ "128034": {
276
+ "content": "<|reserved_special_token_26|>",
277
+ "lstrip": false,
278
+ "normalized": false,
279
+ "rstrip": false,
280
+ "single_word": false,
281
+ "special": true
282
+ },
283
+ "128035": {
284
+ "content": "<|reserved_special_token_27|>",
285
+ "lstrip": false,
286
+ "normalized": false,
287
+ "rstrip": false,
288
+ "single_word": false,
289
+ "special": true
290
+ },
291
+ "128036": {
292
+ "content": "<|reserved_special_token_28|>",
293
+ "lstrip": false,
294
+ "normalized": false,
295
+ "rstrip": false,
296
+ "single_word": false,
297
+ "special": true
298
+ },
299
+ "128037": {
300
+ "content": "<|reserved_special_token_29|>",
301
+ "lstrip": false,
302
+ "normalized": false,
303
+ "rstrip": false,
304
+ "single_word": false,
305
+ "special": true
306
+ },
307
+ "128038": {
308
+ "content": "<|reserved_special_token_30|>",
309
+ "lstrip": false,
310
+ "normalized": false,
311
+ "rstrip": false,
312
+ "single_word": false,
313
+ "special": true
314
+ },
315
+ "128039": {
316
+ "content": "<|reserved_special_token_31|>",
317
+ "lstrip": false,
318
+ "normalized": false,
319
+ "rstrip": false,
320
+ "single_word": false,
321
+ "special": true
322
+ },
323
+ "128040": {
324
+ "content": "<|reserved_special_token_32|>",
325
+ "lstrip": false,
326
+ "normalized": false,
327
+ "rstrip": false,
328
+ "single_word": false,
329
+ "special": true
330
+ },
331
+ "128041": {
332
+ "content": "<|reserved_special_token_33|>",
333
+ "lstrip": false,
334
+ "normalized": false,
335
+ "rstrip": false,
336
+ "single_word": false,
337
+ "special": true
338
+ },
339
+ "128042": {
340
+ "content": "<|reserved_special_token_34|>",
341
+ "lstrip": false,
342
+ "normalized": false,
343
+ "rstrip": false,
344
+ "single_word": false,
345
+ "special": true
346
+ },
347
+ "128043": {
348
+ "content": "<|reserved_special_token_35|>",
349
+ "lstrip": false,
350
+ "normalized": false,
351
+ "rstrip": false,
352
+ "single_word": false,
353
+ "special": true
354
+ },
355
+ "128044": {
356
+ "content": "<|reserved_special_token_36|>",
357
+ "lstrip": false,
358
+ "normalized": false,
359
+ "rstrip": false,
360
+ "single_word": false,
361
+ "special": true
362
+ },
363
+ "128045": {
364
+ "content": "<|reserved_special_token_37|>",
365
+ "lstrip": false,
366
+ "normalized": false,
367
+ "rstrip": false,
368
+ "single_word": false,
369
+ "special": true
370
+ },
371
+ "128046": {
372
+ "content": "<|reserved_special_token_38|>",
373
+ "lstrip": false,
374
+ "normalized": false,
375
+ "rstrip": false,
376
+ "single_word": false,
377
+ "special": true
378
+ },
379
+ "128047": {
380
+ "content": "<|reserved_special_token_39|>",
381
+ "lstrip": false,
382
+ "normalized": false,
383
+ "rstrip": false,
384
+ "single_word": false,
385
+ "special": true
386
+ },
387
+ "128048": {
388
+ "content": "<|reserved_special_token_40|>",
389
+ "lstrip": false,
390
+ "normalized": false,
391
+ "rstrip": false,
392
+ "single_word": false,
393
+ "special": true
394
+ },
395
+ "128049": {
396
+ "content": "<|reserved_special_token_41|>",
397
+ "lstrip": false,
398
+ "normalized": false,
399
+ "rstrip": false,
400
+ "single_word": false,
401
+ "special": true
402
+ },
403
+ "128050": {
404
+ "content": "<|reserved_special_token_42|>",
405
+ "lstrip": false,
406
+ "normalized": false,
407
+ "rstrip": false,
408
+ "single_word": false,
409
+ "special": true
410
+ },
411
+ "128051": {
412
+ "content": "<|reserved_special_token_43|>",
413
+ "lstrip": false,
414
+ "normalized": false,
415
+ "rstrip": false,
416
+ "single_word": false,
417
+ "special": true
418
+ },
419
+ "128052": {
420
+ "content": "<|reserved_special_token_44|>",
421
+ "lstrip": false,
422
+ "normalized": false,
423
+ "rstrip": false,
424
+ "single_word": false,
425
+ "special": true
426
+ },
427
+ "128053": {
428
+ "content": "<|reserved_special_token_45|>",
429
+ "lstrip": false,
430
+ "normalized": false,
431
+ "rstrip": false,
432
+ "single_word": false,
433
+ "special": true
434
+ },
435
+ "128054": {
436
+ "content": "<|reserved_special_token_46|>",
437
+ "lstrip": false,
438
+ "normalized": false,
439
+ "rstrip": false,
440
+ "single_word": false,
441
+ "special": true
442
+ },
443
+ "128055": {
444
+ "content": "<|reserved_special_token_47|>",
445
+ "lstrip": false,
446
+ "normalized": false,
447
+ "rstrip": false,
448
+ "single_word": false,
449
+ "special": true
450
+ },
451
+ "128056": {
452
+ "content": "<|reserved_special_token_48|>",
453
+ "lstrip": false,
454
+ "normalized": false,
455
+ "rstrip": false,
456
+ "single_word": false,
457
+ "special": true
458
+ },
459
+ "128057": {
460
+ "content": "<|reserved_special_token_49|>",
461
+ "lstrip": false,
462
+ "normalized": false,
463
+ "rstrip": false,
464
+ "single_word": false,
465
+ "special": true
466
+ },
467
+ "128058": {
468
+ "content": "<|reserved_special_token_50|>",
469
+ "lstrip": false,
470
+ "normalized": false,
471
+ "rstrip": false,
472
+ "single_word": false,
473
+ "special": true
474
+ },
475
+ "128059": {
476
+ "content": "<|reserved_special_token_51|>",
477
+ "lstrip": false,
478
+ "normalized": false,
479
+ "rstrip": false,
480
+ "single_word": false,
481
+ "special": true
482
+ },
483
+ "128060": {
484
+ "content": "<|reserved_special_token_52|>",
485
+ "lstrip": false,
486
+ "normalized": false,
487
+ "rstrip": false,
488
+ "single_word": false,
489
+ "special": true
490
+ },
491
+ "128061": {
492
+ "content": "<|reserved_special_token_53|>",
493
+ "lstrip": false,
494
+ "normalized": false,
495
+ "rstrip": false,
496
+ "single_word": false,
497
+ "special": true
498
+ },
499
+ "128062": {
500
+ "content": "<|reserved_special_token_54|>",
501
+ "lstrip": false,
502
+ "normalized": false,
503
+ "rstrip": false,
504
+ "single_word": false,
505
+ "special": true
506
+ },
507
+ "128063": {
508
+ "content": "<|reserved_special_token_55|>",
509
+ "lstrip": false,
510
+ "normalized": false,
511
+ "rstrip": false,
512
+ "single_word": false,
513
+ "special": true
514
+ },
515
+ "128064": {
516
+ "content": "<|reserved_special_token_56|>",
517
+ "lstrip": false,
518
+ "normalized": false,
519
+ "rstrip": false,
520
+ "single_word": false,
521
+ "special": true
522
+ },
523
+ "128065": {
524
+ "content": "<|reserved_special_token_57|>",
525
+ "lstrip": false,
526
+ "normalized": false,
527
+ "rstrip": false,
528
+ "single_word": false,
529
+ "special": true
530
+ },
531
+ "128066": {
532
+ "content": "<|reserved_special_token_58|>",
533
+ "lstrip": false,
534
+ "normalized": false,
535
+ "rstrip": false,
536
+ "single_word": false,
537
+ "special": true
538
+ },
539
+ "128067": {
540
+ "content": "<|reserved_special_token_59|>",
541
+ "lstrip": false,
542
+ "normalized": false,
543
+ "rstrip": false,
544
+ "single_word": false,
545
+ "special": true
546
+ },
547
+ "128068": {
548
+ "content": "<|reserved_special_token_60|>",
549
+ "lstrip": false,
550
+ "normalized": false,
551
+ "rstrip": false,
552
+ "single_word": false,
553
+ "special": true
554
+ },
555
+ "128069": {
556
+ "content": "<|reserved_special_token_61|>",
557
+ "lstrip": false,
558
+ "normalized": false,
559
+ "rstrip": false,
560
+ "single_word": false,
561
+ "special": true
562
+ },
563
+ "128070": {
564
+ "content": "<|reserved_special_token_62|>",
565
+ "lstrip": false,
566
+ "normalized": false,
567
+ "rstrip": false,
568
+ "single_word": false,
569
+ "special": true
570
+ },
571
+ "128071": {
572
+ "content": "<|reserved_special_token_63|>",
573
+ "lstrip": false,
574
+ "normalized": false,
575
+ "rstrip": false,
576
+ "single_word": false,
577
+ "special": true
578
+ },
579
+ "128072": {
580
+ "content": "<|reserved_special_token_64|>",
581
+ "lstrip": false,
582
+ "normalized": false,
583
+ "rstrip": false,
584
+ "single_word": false,
585
+ "special": true
586
+ },
587
+ "128073": {
588
+ "content": "<|reserved_special_token_65|>",
589
+ "lstrip": false,
590
+ "normalized": false,
591
+ "rstrip": false,
592
+ "single_word": false,
593
+ "special": true
594
+ },
595
+ "128074": {
596
+ "content": "<|reserved_special_token_66|>",
597
+ "lstrip": false,
598
+ "normalized": false,
599
+ "rstrip": false,
600
+ "single_word": false,
601
+ "special": true
602
+ },
603
+ "128075": {
604
+ "content": "<|reserved_special_token_67|>",
605
+ "lstrip": false,
606
+ "normalized": false,
607
+ "rstrip": false,
608
+ "single_word": false,
609
+ "special": true
610
+ },
611
+ "128076": {
612
+ "content": "<|reserved_special_token_68|>",
613
+ "lstrip": false,
614
+ "normalized": false,
615
+ "rstrip": false,
616
+ "single_word": false,
617
+ "special": true
618
+ },
619
+ "128077": {
620
+ "content": "<|reserved_special_token_69|>",
621
+ "lstrip": false,
622
+ "normalized": false,
623
+ "rstrip": false,
624
+ "single_word": false,
625
+ "special": true
626
+ },
627
+ "128078": {
628
+ "content": "<|reserved_special_token_70|>",
629
+ "lstrip": false,
630
+ "normalized": false,
631
+ "rstrip": false,
632
+ "single_word": false,
633
+ "special": true
634
+ },
635
+ "128079": {
636
+ "content": "<|reserved_special_token_71|>",
637
+ "lstrip": false,
638
+ "normalized": false,
639
+ "rstrip": false,
640
+ "single_word": false,
641
+ "special": true
642
+ },
643
+ "128080": {
644
+ "content": "<|reserved_special_token_72|>",
645
+ "lstrip": false,
646
+ "normalized": false,
647
+ "rstrip": false,
648
+ "single_word": false,
649
+ "special": true
650
+ },
651
+ "128081": {
652
+ "content": "<|reserved_special_token_73|>",
653
+ "lstrip": false,
654
+ "normalized": false,
655
+ "rstrip": false,
656
+ "single_word": false,
657
+ "special": true
658
+ },
659
+ "128082": {
660
+ "content": "<|reserved_special_token_74|>",
661
+ "lstrip": false,
662
+ "normalized": false,
663
+ "rstrip": false,
664
+ "single_word": false,
665
+ "special": true
666
+ },
667
+ "128083": {
668
+ "content": "<|reserved_special_token_75|>",
669
+ "lstrip": false,
670
+ "normalized": false,
671
+ "rstrip": false,
672
+ "single_word": false,
673
+ "special": true
674
+ },
675
+ "128084": {
676
+ "content": "<|reserved_special_token_76|>",
677
+ "lstrip": false,
678
+ "normalized": false,
679
+ "rstrip": false,
680
+ "single_word": false,
681
+ "special": true
682
+ },
683
+ "128085": {
684
+ "content": "<|reserved_special_token_77|>",
685
+ "lstrip": false,
686
+ "normalized": false,
687
+ "rstrip": false,
688
+ "single_word": false,
689
+ "special": true
690
+ },
691
+ "128086": {
692
+ "content": "<|reserved_special_token_78|>",
693
+ "lstrip": false,
694
+ "normalized": false,
695
+ "rstrip": false,
696
+ "single_word": false,
697
+ "special": true
698
+ },
699
+ "128087": {
700
+ "content": "<|reserved_special_token_79|>",
701
+ "lstrip": false,
702
+ "normalized": false,
703
+ "rstrip": false,
704
+ "single_word": false,
705
+ "special": true
706
+ },
707
+ "128088": {
708
+ "content": "<|reserved_special_token_80|>",
709
+ "lstrip": false,
710
+ "normalized": false,
711
+ "rstrip": false,
712
+ "single_word": false,
713
+ "special": true
714
+ },
715
+ "128089": {
716
+ "content": "<|reserved_special_token_81|>",
717
+ "lstrip": false,
718
+ "normalized": false,
719
+ "rstrip": false,
720
+ "single_word": false,
721
+ "special": true
722
+ },
723
+ "128090": {
724
+ "content": "<|reserved_special_token_82|>",
725
+ "lstrip": false,
726
+ "normalized": false,
727
+ "rstrip": false,
728
+ "single_word": false,
729
+ "special": true
730
+ },
731
+ "128091": {
732
+ "content": "<|reserved_special_token_83|>",
733
+ "lstrip": false,
734
+ "normalized": false,
735
+ "rstrip": false,
736
+ "single_word": false,
737
+ "special": true
738
+ },
739
+ "128092": {
740
+ "content": "<|reserved_special_token_84|>",
741
+ "lstrip": false,
742
+ "normalized": false,
743
+ "rstrip": false,
744
+ "single_word": false,
745
+ "special": true
746
+ },
747
+ "128093": {
748
+ "content": "<|reserved_special_token_85|>",
749
+ "lstrip": false,
750
+ "normalized": false,
751
+ "rstrip": false,
752
+ "single_word": false,
753
+ "special": true
754
+ },
755
+ "128094": {
756
+ "content": "<|reserved_special_token_86|>",
757
+ "lstrip": false,
758
+ "normalized": false,
759
+ "rstrip": false,
760
+ "single_word": false,
761
+ "special": true
762
+ },
763
+ "128095": {
764
+ "content": "<|reserved_special_token_87|>",
765
+ "lstrip": false,
766
+ "normalized": false,
767
+ "rstrip": false,
768
+ "single_word": false,
769
+ "special": true
770
+ },
771
+ "128096": {
772
+ "content": "<|reserved_special_token_88|>",
773
+ "lstrip": false,
774
+ "normalized": false,
775
+ "rstrip": false,
776
+ "single_word": false,
777
+ "special": true
778
+ },
779
+ "128097": {
780
+ "content": "<|reserved_special_token_89|>",
781
+ "lstrip": false,
782
+ "normalized": false,
783
+ "rstrip": false,
784
+ "single_word": false,
785
+ "special": true
786
+ },
787
+ "128098": {
788
+ "content": "<|reserved_special_token_90|>",
789
+ "lstrip": false,
790
+ "normalized": false,
791
+ "rstrip": false,
792
+ "single_word": false,
793
+ "special": true
794
+ },
795
+ "128099": {
796
+ "content": "<|reserved_special_token_91|>",
797
+ "lstrip": false,
798
+ "normalized": false,
799
+ "rstrip": false,
800
+ "single_word": false,
801
+ "special": true
802
+ },
803
+ "128100": {
804
+ "content": "<|reserved_special_token_92|>",
805
+ "lstrip": false,
806
+ "normalized": false,
807
+ "rstrip": false,
808
+ "single_word": false,
809
+ "special": true
810
+ },
811
+ "128101": {
812
+ "content": "<|reserved_special_token_93|>",
813
+ "lstrip": false,
814
+ "normalized": false,
815
+ "rstrip": false,
816
+ "single_word": false,
817
+ "special": true
818
+ },
819
+ "128102": {
820
+ "content": "<|reserved_special_token_94|>",
821
+ "lstrip": false,
822
+ "normalized": false,
823
+ "rstrip": false,
824
+ "single_word": false,
825
+ "special": true
826
+ },
827
+ "128103": {
828
+ "content": "<|reserved_special_token_95|>",
829
+ "lstrip": false,
830
+ "normalized": false,
831
+ "rstrip": false,
832
+ "single_word": false,
833
+ "special": true
834
+ },
835
+ "128104": {
836
+ "content": "<|reserved_special_token_96|>",
837
+ "lstrip": false,
838
+ "normalized": false,
839
+ "rstrip": false,
840
+ "single_word": false,
841
+ "special": true
842
+ },
843
+ "128105": {
844
+ "content": "<|reserved_special_token_97|>",
845
+ "lstrip": false,
846
+ "normalized": false,
847
+ "rstrip": false,
848
+ "single_word": false,
849
+ "special": true
850
+ },
851
+ "128106": {
852
+ "content": "<|reserved_special_token_98|>",
853
+ "lstrip": false,
854
+ "normalized": false,
855
+ "rstrip": false,
856
+ "single_word": false,
857
+ "special": true
858
+ },
859
+ "128107": {
860
+ "content": "<|reserved_special_token_99|>",
861
+ "lstrip": false,
862
+ "normalized": false,
863
+ "rstrip": false,
864
+ "single_word": false,
865
+ "special": true
866
+ },
867
+ "128108": {
868
+ "content": "<|reserved_special_token_100|>",
869
+ "lstrip": false,
870
+ "normalized": false,
871
+ "rstrip": false,
872
+ "single_word": false,
873
+ "special": true
874
+ },
875
+ "128109": {
876
+ "content": "<|reserved_special_token_101|>",
877
+ "lstrip": false,
878
+ "normalized": false,
879
+ "rstrip": false,
880
+ "single_word": false,
881
+ "special": true
882
+ },
883
+ "128110": {
884
+ "content": "<|reserved_special_token_102|>",
885
+ "lstrip": false,
886
+ "normalized": false,
887
+ "rstrip": false,
888
+ "single_word": false,
889
+ "special": true
890
+ },
891
+ "128111": {
892
+ "content": "<|reserved_special_token_103|>",
893
+ "lstrip": false,
894
+ "normalized": false,
895
+ "rstrip": false,
896
+ "single_word": false,
897
+ "special": true
898
+ },
899
+ "128112": {
900
+ "content": "<|reserved_special_token_104|>",
901
+ "lstrip": false,
902
+ "normalized": false,
903
+ "rstrip": false,
904
+ "single_word": false,
905
+ "special": true
906
+ },
907
+ "128113": {
908
+ "content": "<|reserved_special_token_105|>",
909
+ "lstrip": false,
910
+ "normalized": false,
911
+ "rstrip": false,
912
+ "single_word": false,
913
+ "special": true
914
+ },
915
+ "128114": {
916
+ "content": "<|reserved_special_token_106|>",
917
+ "lstrip": false,
918
+ "normalized": false,
919
+ "rstrip": false,
920
+ "single_word": false,
921
+ "special": true
922
+ },
923
+ "128115": {
924
+ "content": "<|reserved_special_token_107|>",
925
+ "lstrip": false,
926
+ "normalized": false,
927
+ "rstrip": false,
928
+ "single_word": false,
929
+ "special": true
930
+ },
931
+ "128116": {
932
+ "content": "<|reserved_special_token_108|>",
933
+ "lstrip": false,
934
+ "normalized": false,
935
+ "rstrip": false,
936
+ "single_word": false,
937
+ "special": true
938
+ },
939
+ "128117": {
940
+ "content": "<|reserved_special_token_109|>",
941
+ "lstrip": false,
942
+ "normalized": false,
943
+ "rstrip": false,
944
+ "single_word": false,
945
+ "special": true
946
+ },
947
+ "128118": {
948
+ "content": "<|reserved_special_token_110|>",
949
+ "lstrip": false,
950
+ "normalized": false,
951
+ "rstrip": false,
952
+ "single_word": false,
953
+ "special": true
954
+ },
955
+ "128119": {
956
+ "content": "<|reserved_special_token_111|>",
957
+ "lstrip": false,
958
+ "normalized": false,
959
+ "rstrip": false,
960
+ "single_word": false,
961
+ "special": true
962
+ },
963
+ "128120": {
964
+ "content": "<|reserved_special_token_112|>",
965
+ "lstrip": false,
966
+ "normalized": false,
967
+ "rstrip": false,
968
+ "single_word": false,
969
+ "special": true
970
+ },
971
+ "128121": {
972
+ "content": "<|reserved_special_token_113|>",
973
+ "lstrip": false,
974
+ "normalized": false,
975
+ "rstrip": false,
976
+ "single_word": false,
977
+ "special": true
978
+ },
979
+ "128122": {
980
+ "content": "<|reserved_special_token_114|>",
981
+ "lstrip": false,
982
+ "normalized": false,
983
+ "rstrip": false,
984
+ "single_word": false,
985
+ "special": true
986
+ },
987
+ "128123": {
988
+ "content": "<|reserved_special_token_115|>",
989
+ "lstrip": false,
990
+ "normalized": false,
991
+ "rstrip": false,
992
+ "single_word": false,
993
+ "special": true
994
+ },
995
+ "128124": {
996
+ "content": "<|reserved_special_token_116|>",
997
+ "lstrip": false,
998
+ "normalized": false,
999
+ "rstrip": false,
1000
+ "single_word": false,
1001
+ "special": true
1002
+ },
1003
+ "128125": {
1004
+ "content": "<|reserved_special_token_117|>",
1005
+ "lstrip": false,
1006
+ "normalized": false,
1007
+ "rstrip": false,
1008
+ "single_word": false,
1009
+ "special": true
1010
+ },
1011
+ "128126": {
1012
+ "content": "<|reserved_special_token_118|>",
1013
+ "lstrip": false,
1014
+ "normalized": false,
1015
+ "rstrip": false,
1016
+ "single_word": false,
1017
+ "special": true
1018
+ },
1019
+ "128127": {
1020
+ "content": "<|reserved_special_token_119|>",
1021
+ "lstrip": false,
1022
+ "normalized": false,
1023
+ "rstrip": false,
1024
+ "single_word": false,
1025
+ "special": true
1026
+ },
1027
+ "128128": {
1028
+ "content": "<|reserved_special_token_120|>",
1029
+ "lstrip": false,
1030
+ "normalized": false,
1031
+ "rstrip": false,
1032
+ "single_word": false,
1033
+ "special": true
1034
+ },
1035
+ "128129": {
1036
+ "content": "<|reserved_special_token_121|>",
1037
+ "lstrip": false,
1038
+ "normalized": false,
1039
+ "rstrip": false,
1040
+ "single_word": false,
1041
+ "special": true
1042
+ },
1043
+ "128130": {
1044
+ "content": "<|reserved_special_token_122|>",
1045
+ "lstrip": false,
1046
+ "normalized": false,
1047
+ "rstrip": false,
1048
+ "single_word": false,
1049
+ "special": true
1050
+ },
1051
+ "128131": {
1052
+ "content": "<|reserved_special_token_123|>",
1053
+ "lstrip": false,
1054
+ "normalized": false,
1055
+ "rstrip": false,
1056
+ "single_word": false,
1057
+ "special": true
1058
+ },
1059
+ "128132": {
1060
+ "content": "<|reserved_special_token_124|>",
1061
+ "lstrip": false,
1062
+ "normalized": false,
1063
+ "rstrip": false,
1064
+ "single_word": false,
1065
+ "special": true
1066
+ },
1067
+ "128133": {
1068
+ "content": "<|reserved_special_token_125|>",
1069
+ "lstrip": false,
1070
+ "normalized": false,
1071
+ "rstrip": false,
1072
+ "single_word": false,
1073
+ "special": true
1074
+ },
1075
+ "128134": {
1076
+ "content": "<|reserved_special_token_126|>",
1077
+ "lstrip": false,
1078
+ "normalized": false,
1079
+ "rstrip": false,
1080
+ "single_word": false,
1081
+ "special": true
1082
+ },
1083
+ "128135": {
1084
+ "content": "<|reserved_special_token_127|>",
1085
+ "lstrip": false,
1086
+ "normalized": false,
1087
+ "rstrip": false,
1088
+ "single_word": false,
1089
+ "special": true
1090
+ },
1091
+ "128136": {
1092
+ "content": "<|reserved_special_token_128|>",
1093
+ "lstrip": false,
1094
+ "normalized": false,
1095
+ "rstrip": false,
1096
+ "single_word": false,
1097
+ "special": true
1098
+ },
1099
+ "128137": {
1100
+ "content": "<|reserved_special_token_129|>",
1101
+ "lstrip": false,
1102
+ "normalized": false,
1103
+ "rstrip": false,
1104
+ "single_word": false,
1105
+ "special": true
1106
+ },
1107
+ "128138": {
1108
+ "content": "<|reserved_special_token_130|>",
1109
+ "lstrip": false,
1110
+ "normalized": false,
1111
+ "rstrip": false,
1112
+ "single_word": false,
1113
+ "special": true
1114
+ },
1115
+ "128139": {
1116
+ "content": "<|reserved_special_token_131|>",
1117
+ "lstrip": false,
1118
+ "normalized": false,
1119
+ "rstrip": false,
1120
+ "single_word": false,
1121
+ "special": true
1122
+ },
1123
+ "128140": {
1124
+ "content": "<|reserved_special_token_132|>",
1125
+ "lstrip": false,
1126
+ "normalized": false,
1127
+ "rstrip": false,
1128
+ "single_word": false,
1129
+ "special": true
1130
+ },
1131
+ "128141": {
1132
+ "content": "<|reserved_special_token_133|>",
1133
+ "lstrip": false,
1134
+ "normalized": false,
1135
+ "rstrip": false,
1136
+ "single_word": false,
1137
+ "special": true
1138
+ },
1139
+ "128142": {
1140
+ "content": "<|reserved_special_token_134|>",
1141
+ "lstrip": false,
1142
+ "normalized": false,
1143
+ "rstrip": false,
1144
+ "single_word": false,
1145
+ "special": true
1146
+ },
1147
+ "128143": {
1148
+ "content": "<|reserved_special_token_135|>",
1149
+ "lstrip": false,
1150
+ "normalized": false,
1151
+ "rstrip": false,
1152
+ "single_word": false,
1153
+ "special": true
1154
+ },
1155
+ "128144": {
1156
+ "content": "<|reserved_special_token_136|>",
1157
+ "lstrip": false,
1158
+ "normalized": false,
1159
+ "rstrip": false,
1160
+ "single_word": false,
1161
+ "special": true
1162
+ },
1163
+ "128145": {
1164
+ "content": "<|reserved_special_token_137|>",
1165
+ "lstrip": false,
1166
+ "normalized": false,
1167
+ "rstrip": false,
1168
+ "single_word": false,
1169
+ "special": true
1170
+ },
1171
+ "128146": {
1172
+ "content": "<|reserved_special_token_138|>",
1173
+ "lstrip": false,
1174
+ "normalized": false,
1175
+ "rstrip": false,
1176
+ "single_word": false,
1177
+ "special": true
1178
+ },
1179
+ "128147": {
1180
+ "content": "<|reserved_special_token_139|>",
1181
+ "lstrip": false,
1182
+ "normalized": false,
1183
+ "rstrip": false,
1184
+ "single_word": false,
1185
+ "special": true
1186
+ },
1187
+ "128148": {
1188
+ "content": "<|reserved_special_token_140|>",
1189
+ "lstrip": false,
1190
+ "normalized": false,
1191
+ "rstrip": false,
1192
+ "single_word": false,
1193
+ "special": true
1194
+ },
1195
+ "128149": {
1196
+ "content": "<|reserved_special_token_141|>",
1197
+ "lstrip": false,
1198
+ "normalized": false,
1199
+ "rstrip": false,
1200
+ "single_word": false,
1201
+ "special": true
1202
+ },
1203
+ "128150": {
1204
+ "content": "<|reserved_special_token_142|>",
1205
+ "lstrip": false,
1206
+ "normalized": false,
1207
+ "rstrip": false,
1208
+ "single_word": false,
1209
+ "special": true
1210
+ },
1211
+ "128151": {
1212
+ "content": "<|reserved_special_token_143|>",
1213
+ "lstrip": false,
1214
+ "normalized": false,
1215
+ "rstrip": false,
1216
+ "single_word": false,
1217
+ "special": true
1218
+ },
1219
+ "128152": {
1220
+ "content": "<|reserved_special_token_144|>",
1221
+ "lstrip": false,
1222
+ "normalized": false,
1223
+ "rstrip": false,
1224
+ "single_word": false,
1225
+ "special": true
1226
+ },
1227
+ "128153": {
1228
+ "content": "<|reserved_special_token_145|>",
1229
+ "lstrip": false,
1230
+ "normalized": false,
1231
+ "rstrip": false,
1232
+ "single_word": false,
1233
+ "special": true
1234
+ },
1235
+ "128154": {
1236
+ "content": "<|reserved_special_token_146|>",
1237
+ "lstrip": false,
1238
+ "normalized": false,
1239
+ "rstrip": false,
1240
+ "single_word": false,
1241
+ "special": true
1242
+ },
1243
+ "128155": {
1244
+ "content": "<|reserved_special_token_147|>",
1245
+ "lstrip": false,
1246
+ "normalized": false,
1247
+ "rstrip": false,
1248
+ "single_word": false,
1249
+ "special": true
1250
+ },
1251
+ "128156": {
1252
+ "content": "<|reserved_special_token_148|>",
1253
+ "lstrip": false,
1254
+ "normalized": false,
1255
+ "rstrip": false,
1256
+ "single_word": false,
1257
+ "special": true
1258
+ },
1259
+ "128157": {
1260
+ "content": "<|reserved_special_token_149|>",
1261
+ "lstrip": false,
1262
+ "normalized": false,
1263
+ "rstrip": false,
1264
+ "single_word": false,
1265
+ "special": true
1266
+ },
1267
+ "128158": {
1268
+ "content": "<|reserved_special_token_150|>",
1269
+ "lstrip": false,
1270
+ "normalized": false,
1271
+ "rstrip": false,
1272
+ "single_word": false,
1273
+ "special": true
1274
+ },
1275
+ "128159": {
1276
+ "content": "<|reserved_special_token_151|>",
1277
+ "lstrip": false,
1278
+ "normalized": false,
1279
+ "rstrip": false,
1280
+ "single_word": false,
1281
+ "special": true
1282
+ },
1283
+ "128160": {
1284
+ "content": "<|reserved_special_token_152|>",
1285
+ "lstrip": false,
1286
+ "normalized": false,
1287
+ "rstrip": false,
1288
+ "single_word": false,
1289
+ "special": true
1290
+ },
1291
+ "128161": {
1292
+ "content": "<|reserved_special_token_153|>",
1293
+ "lstrip": false,
1294
+ "normalized": false,
1295
+ "rstrip": false,
1296
+ "single_word": false,
1297
+ "special": true
1298
+ },
1299
+ "128162": {
1300
+ "content": "<|reserved_special_token_154|>",
1301
+ "lstrip": false,
1302
+ "normalized": false,
1303
+ "rstrip": false,
1304
+ "single_word": false,
1305
+ "special": true
1306
+ },
1307
+ "128163": {
1308
+ "content": "<|reserved_special_token_155|>",
1309
+ "lstrip": false,
1310
+ "normalized": false,
1311
+ "rstrip": false,
1312
+ "single_word": false,
1313
+ "special": true
1314
+ },
1315
+ "128164": {
1316
+ "content": "<|reserved_special_token_156|>",
1317
+ "lstrip": false,
1318
+ "normalized": false,
1319
+ "rstrip": false,
1320
+ "single_word": false,
1321
+ "special": true
1322
+ },
1323
+ "128165": {
1324
+ "content": "<|reserved_special_token_157|>",
1325
+ "lstrip": false,
1326
+ "normalized": false,
1327
+ "rstrip": false,
1328
+ "single_word": false,
1329
+ "special": true
1330
+ },
1331
+ "128166": {
1332
+ "content": "<|reserved_special_token_158|>",
1333
+ "lstrip": false,
1334
+ "normalized": false,
1335
+ "rstrip": false,
1336
+ "single_word": false,
1337
+ "special": true
1338
+ },
1339
+ "128167": {
1340
+ "content": "<|reserved_special_token_159|>",
1341
+ "lstrip": false,
1342
+ "normalized": false,
1343
+ "rstrip": false,
1344
+ "single_word": false,
1345
+ "special": true
1346
+ },
1347
+ "128168": {
1348
+ "content": "<|reserved_special_token_160|>",
1349
+ "lstrip": false,
1350
+ "normalized": false,
1351
+ "rstrip": false,
1352
+ "single_word": false,
1353
+ "special": true
1354
+ },
1355
+ "128169": {
1356
+ "content": "<|reserved_special_token_161|>",
1357
+ "lstrip": false,
1358
+ "normalized": false,
1359
+ "rstrip": false,
1360
+ "single_word": false,
1361
+ "special": true
1362
+ },
1363
+ "128170": {
1364
+ "content": "<|reserved_special_token_162|>",
1365
+ "lstrip": false,
1366
+ "normalized": false,
1367
+ "rstrip": false,
1368
+ "single_word": false,
1369
+ "special": true
1370
+ },
1371
+ "128171": {
1372
+ "content": "<|reserved_special_token_163|>",
1373
+ "lstrip": false,
1374
+ "normalized": false,
1375
+ "rstrip": false,
1376
+ "single_word": false,
1377
+ "special": true
1378
+ },
1379
+ "128172": {
1380
+ "content": "<|reserved_special_token_164|>",
1381
+ "lstrip": false,
1382
+ "normalized": false,
1383
+ "rstrip": false,
1384
+ "single_word": false,
1385
+ "special": true
1386
+ },
1387
+ "128173": {
1388
+ "content": "<|reserved_special_token_165|>",
1389
+ "lstrip": false,
1390
+ "normalized": false,
1391
+ "rstrip": false,
1392
+ "single_word": false,
1393
+ "special": true
1394
+ },
1395
+ "128174": {
1396
+ "content": "<|reserved_special_token_166|>",
1397
+ "lstrip": false,
1398
+ "normalized": false,
1399
+ "rstrip": false,
1400
+ "single_word": false,
1401
+ "special": true
1402
+ },
1403
+ "128175": {
1404
+ "content": "<|reserved_special_token_167|>",
1405
+ "lstrip": false,
1406
+ "normalized": false,
1407
+ "rstrip": false,
1408
+ "single_word": false,
1409
+ "special": true
1410
+ },
1411
+ "128176": {
1412
+ "content": "<|reserved_special_token_168|>",
1413
+ "lstrip": false,
1414
+ "normalized": false,
1415
+ "rstrip": false,
1416
+ "single_word": false,
1417
+ "special": true
1418
+ },
1419
+ "128177": {
1420
+ "content": "<|reserved_special_token_169|>",
1421
+ "lstrip": false,
1422
+ "normalized": false,
1423
+ "rstrip": false,
1424
+ "single_word": false,
1425
+ "special": true
1426
+ },
1427
+ "128178": {
1428
+ "content": "<|reserved_special_token_170|>",
1429
+ "lstrip": false,
1430
+ "normalized": false,
1431
+ "rstrip": false,
1432
+ "single_word": false,
1433
+ "special": true
1434
+ },
1435
+ "128179": {
1436
+ "content": "<|reserved_special_token_171|>",
1437
+ "lstrip": false,
1438
+ "normalized": false,
1439
+ "rstrip": false,
1440
+ "single_word": false,
1441
+ "special": true
1442
+ },
1443
+ "128180": {
1444
+ "content": "<|reserved_special_token_172|>",
1445
+ "lstrip": false,
1446
+ "normalized": false,
1447
+ "rstrip": false,
1448
+ "single_word": false,
1449
+ "special": true
1450
+ },
1451
+ "128181": {
1452
+ "content": "<|reserved_special_token_173|>",
1453
+ "lstrip": false,
1454
+ "normalized": false,
1455
+ "rstrip": false,
1456
+ "single_word": false,
1457
+ "special": true
1458
+ },
1459
+ "128182": {
1460
+ "content": "<|reserved_special_token_174|>",
1461
+ "lstrip": false,
1462
+ "normalized": false,
1463
+ "rstrip": false,
1464
+ "single_word": false,
1465
+ "special": true
1466
+ },
1467
+ "128183": {
1468
+ "content": "<|reserved_special_token_175|>",
1469
+ "lstrip": false,
1470
+ "normalized": false,
1471
+ "rstrip": false,
1472
+ "single_word": false,
1473
+ "special": true
1474
+ },
1475
+ "128184": {
1476
+ "content": "<|reserved_special_token_176|>",
1477
+ "lstrip": false,
1478
+ "normalized": false,
1479
+ "rstrip": false,
1480
+ "single_word": false,
1481
+ "special": true
1482
+ },
1483
+ "128185": {
1484
+ "content": "<|reserved_special_token_177|>",
1485
+ "lstrip": false,
1486
+ "normalized": false,
1487
+ "rstrip": false,
1488
+ "single_word": false,
1489
+ "special": true
1490
+ },
1491
+ "128186": {
1492
+ "content": "<|reserved_special_token_178|>",
1493
+ "lstrip": false,
1494
+ "normalized": false,
1495
+ "rstrip": false,
1496
+ "single_word": false,
1497
+ "special": true
1498
+ },
1499
+ "128187": {
1500
+ "content": "<|reserved_special_token_179|>",
1501
+ "lstrip": false,
1502
+ "normalized": false,
1503
+ "rstrip": false,
1504
+ "single_word": false,
1505
+ "special": true
1506
+ },
1507
+ "128188": {
1508
+ "content": "<|reserved_special_token_180|>",
1509
+ "lstrip": false,
1510
+ "normalized": false,
1511
+ "rstrip": false,
1512
+ "single_word": false,
1513
+ "special": true
1514
+ },
1515
+ "128189": {
1516
+ "content": "<|reserved_special_token_181|>",
1517
+ "lstrip": false,
1518
+ "normalized": false,
1519
+ "rstrip": false,
1520
+ "single_word": false,
1521
+ "special": true
1522
+ },
1523
+ "128190": {
1524
+ "content": "<|reserved_special_token_182|>",
1525
+ "lstrip": false,
1526
+ "normalized": false,
1527
+ "rstrip": false,
1528
+ "single_word": false,
1529
+ "special": true
1530
+ },
1531
+ "128191": {
1532
+ "content": "<|reserved_special_token_183|>",
1533
+ "lstrip": false,
1534
+ "normalized": false,
1535
+ "rstrip": false,
1536
+ "single_word": false,
1537
+ "special": true
1538
+ },
1539
+ "128192": {
1540
+ "content": "<|reserved_special_token_184|>",
1541
+ "lstrip": false,
1542
+ "normalized": false,
1543
+ "rstrip": false,
1544
+ "single_word": false,
1545
+ "special": true
1546
+ },
1547
+ "128193": {
1548
+ "content": "<|reserved_special_token_185|>",
1549
+ "lstrip": false,
1550
+ "normalized": false,
1551
+ "rstrip": false,
1552
+ "single_word": false,
1553
+ "special": true
1554
+ },
1555
+ "128194": {
1556
+ "content": "<|reserved_special_token_186|>",
1557
+ "lstrip": false,
1558
+ "normalized": false,
1559
+ "rstrip": false,
1560
+ "single_word": false,
1561
+ "special": true
1562
+ },
1563
+ "128195": {
1564
+ "content": "<|reserved_special_token_187|>",
1565
+ "lstrip": false,
1566
+ "normalized": false,
1567
+ "rstrip": false,
1568
+ "single_word": false,
1569
+ "special": true
1570
+ },
1571
+ "128196": {
1572
+ "content": "<|reserved_special_token_188|>",
1573
+ "lstrip": false,
1574
+ "normalized": false,
1575
+ "rstrip": false,
1576
+ "single_word": false,
1577
+ "special": true
1578
+ },
1579
+ "128197": {
1580
+ "content": "<|reserved_special_token_189|>",
1581
+ "lstrip": false,
1582
+ "normalized": false,
1583
+ "rstrip": false,
1584
+ "single_word": false,
1585
+ "special": true
1586
+ },
1587
+ "128198": {
1588
+ "content": "<|reserved_special_token_190|>",
1589
+ "lstrip": false,
1590
+ "normalized": false,
1591
+ "rstrip": false,
1592
+ "single_word": false,
1593
+ "special": true
1594
+ },
1595
+ "128199": {
1596
+ "content": "<|reserved_special_token_191|>",
1597
+ "lstrip": false,
1598
+ "normalized": false,
1599
+ "rstrip": false,
1600
+ "single_word": false,
1601
+ "special": true
1602
+ },
1603
+ "128200": {
1604
+ "content": "<|reserved_special_token_192|>",
1605
+ "lstrip": false,
1606
+ "normalized": false,
1607
+ "rstrip": false,
1608
+ "single_word": false,
1609
+ "special": true
1610
+ },
1611
+ "128201": {
1612
+ "content": "<|reserved_special_token_193|>",
1613
+ "lstrip": false,
1614
+ "normalized": false,
1615
+ "rstrip": false,
1616
+ "single_word": false,
1617
+ "special": true
1618
+ },
1619
+ "128202": {
1620
+ "content": "<|reserved_special_token_194|>",
1621
+ "lstrip": false,
1622
+ "normalized": false,
1623
+ "rstrip": false,
1624
+ "single_word": false,
1625
+ "special": true
1626
+ },
1627
+ "128203": {
1628
+ "content": "<|reserved_special_token_195|>",
1629
+ "lstrip": false,
1630
+ "normalized": false,
1631
+ "rstrip": false,
1632
+ "single_word": false,
1633
+ "special": true
1634
+ },
1635
+ "128204": {
1636
+ "content": "<|reserved_special_token_196|>",
1637
+ "lstrip": false,
1638
+ "normalized": false,
1639
+ "rstrip": false,
1640
+ "single_word": false,
1641
+ "special": true
1642
+ },
1643
+ "128205": {
1644
+ "content": "<|reserved_special_token_197|>",
1645
+ "lstrip": false,
1646
+ "normalized": false,
1647
+ "rstrip": false,
1648
+ "single_word": false,
1649
+ "special": true
1650
+ },
1651
+ "128206": {
1652
+ "content": "<|reserved_special_token_198|>",
1653
+ "lstrip": false,
1654
+ "normalized": false,
1655
+ "rstrip": false,
1656
+ "single_word": false,
1657
+ "special": true
1658
+ },
1659
+ "128207": {
1660
+ "content": "<|reserved_special_token_199|>",
1661
+ "lstrip": false,
1662
+ "normalized": false,
1663
+ "rstrip": false,
1664
+ "single_word": false,
1665
+ "special": true
1666
+ },
1667
+ "128208": {
1668
+ "content": "<|reserved_special_token_200|>",
1669
+ "lstrip": false,
1670
+ "normalized": false,
1671
+ "rstrip": false,
1672
+ "single_word": false,
1673
+ "special": true
1674
+ },
1675
+ "128209": {
1676
+ "content": "<|reserved_special_token_201|>",
1677
+ "lstrip": false,
1678
+ "normalized": false,
1679
+ "rstrip": false,
1680
+ "single_word": false,
1681
+ "special": true
1682
+ },
1683
+ "128210": {
1684
+ "content": "<|reserved_special_token_202|>",
1685
+ "lstrip": false,
1686
+ "normalized": false,
1687
+ "rstrip": false,
1688
+ "single_word": false,
1689
+ "special": true
1690
+ },
1691
+ "128211": {
1692
+ "content": "<|reserved_special_token_203|>",
1693
+ "lstrip": false,
1694
+ "normalized": false,
1695
+ "rstrip": false,
1696
+ "single_word": false,
1697
+ "special": true
1698
+ },
1699
+ "128212": {
1700
+ "content": "<|reserved_special_token_204|>",
1701
+ "lstrip": false,
1702
+ "normalized": false,
1703
+ "rstrip": false,
1704
+ "single_word": false,
1705
+ "special": true
1706
+ },
1707
+ "128213": {
1708
+ "content": "<|reserved_special_token_205|>",
1709
+ "lstrip": false,
1710
+ "normalized": false,
1711
+ "rstrip": false,
1712
+ "single_word": false,
1713
+ "special": true
1714
+ },
1715
+ "128214": {
1716
+ "content": "<|reserved_special_token_206|>",
1717
+ "lstrip": false,
1718
+ "normalized": false,
1719
+ "rstrip": false,
1720
+ "single_word": false,
1721
+ "special": true
1722
+ },
1723
+ "128215": {
1724
+ "content": "<|reserved_special_token_207|>",
1725
+ "lstrip": false,
1726
+ "normalized": false,
1727
+ "rstrip": false,
1728
+ "single_word": false,
1729
+ "special": true
1730
+ },
1731
+ "128216": {
1732
+ "content": "<|reserved_special_token_208|>",
1733
+ "lstrip": false,
1734
+ "normalized": false,
1735
+ "rstrip": false,
1736
+ "single_word": false,
1737
+ "special": true
1738
+ },
1739
+ "128217": {
1740
+ "content": "<|reserved_special_token_209|>",
1741
+ "lstrip": false,
1742
+ "normalized": false,
1743
+ "rstrip": false,
1744
+ "single_word": false,
1745
+ "special": true
1746
+ },
1747
+ "128218": {
1748
+ "content": "<|reserved_special_token_210|>",
1749
+ "lstrip": false,
1750
+ "normalized": false,
1751
+ "rstrip": false,
1752
+ "single_word": false,
1753
+ "special": true
1754
+ },
1755
+ "128219": {
1756
+ "content": "<|reserved_special_token_211|>",
1757
+ "lstrip": false,
1758
+ "normalized": false,
1759
+ "rstrip": false,
1760
+ "single_word": false,
1761
+ "special": true
1762
+ },
1763
+ "128220": {
1764
+ "content": "<|reserved_special_token_212|>",
1765
+ "lstrip": false,
1766
+ "normalized": false,
1767
+ "rstrip": false,
1768
+ "single_word": false,
1769
+ "special": true
1770
+ },
1771
+ "128221": {
1772
+ "content": "<|reserved_special_token_213|>",
1773
+ "lstrip": false,
1774
+ "normalized": false,
1775
+ "rstrip": false,
1776
+ "single_word": false,
1777
+ "special": true
1778
+ },
1779
+ "128222": {
1780
+ "content": "<|reserved_special_token_214|>",
1781
+ "lstrip": false,
1782
+ "normalized": false,
1783
+ "rstrip": false,
1784
+ "single_word": false,
1785
+ "special": true
1786
+ },
1787
+ "128223": {
1788
+ "content": "<|reserved_special_token_215|>",
1789
+ "lstrip": false,
1790
+ "normalized": false,
1791
+ "rstrip": false,
1792
+ "single_word": false,
1793
+ "special": true
1794
+ },
1795
+ "128224": {
1796
+ "content": "<|reserved_special_token_216|>",
1797
+ "lstrip": false,
1798
+ "normalized": false,
1799
+ "rstrip": false,
1800
+ "single_word": false,
1801
+ "special": true
1802
+ },
1803
+ "128225": {
1804
+ "content": "<|reserved_special_token_217|>",
1805
+ "lstrip": false,
1806
+ "normalized": false,
1807
+ "rstrip": false,
1808
+ "single_word": false,
1809
+ "special": true
1810
+ },
1811
+ "128226": {
1812
+ "content": "<|reserved_special_token_218|>",
1813
+ "lstrip": false,
1814
+ "normalized": false,
1815
+ "rstrip": false,
1816
+ "single_word": false,
1817
+ "special": true
1818
+ },
1819
+ "128227": {
1820
+ "content": "<|reserved_special_token_219|>",
1821
+ "lstrip": false,
1822
+ "normalized": false,
1823
+ "rstrip": false,
1824
+ "single_word": false,
1825
+ "special": true
1826
+ },
1827
+ "128228": {
1828
+ "content": "<|reserved_special_token_220|>",
1829
+ "lstrip": false,
1830
+ "normalized": false,
1831
+ "rstrip": false,
1832
+ "single_word": false,
1833
+ "special": true
1834
+ },
1835
+ "128229": {
1836
+ "content": "<|reserved_special_token_221|>",
1837
+ "lstrip": false,
1838
+ "normalized": false,
1839
+ "rstrip": false,
1840
+ "single_word": false,
1841
+ "special": true
1842
+ },
1843
+ "128230": {
1844
+ "content": "<|reserved_special_token_222|>",
1845
+ "lstrip": false,
1846
+ "normalized": false,
1847
+ "rstrip": false,
1848
+ "single_word": false,
1849
+ "special": true
1850
+ },
1851
+ "128231": {
1852
+ "content": "<|reserved_special_token_223|>",
1853
+ "lstrip": false,
1854
+ "normalized": false,
1855
+ "rstrip": false,
1856
+ "single_word": false,
1857
+ "special": true
1858
+ },
1859
+ "128232": {
1860
+ "content": "<|reserved_special_token_224|>",
1861
+ "lstrip": false,
1862
+ "normalized": false,
1863
+ "rstrip": false,
1864
+ "single_word": false,
1865
+ "special": true
1866
+ },
1867
+ "128233": {
1868
+ "content": "<|reserved_special_token_225|>",
1869
+ "lstrip": false,
1870
+ "normalized": false,
1871
+ "rstrip": false,
1872
+ "single_word": false,
1873
+ "special": true
1874
+ },
1875
+ "128234": {
1876
+ "content": "<|reserved_special_token_226|>",
1877
+ "lstrip": false,
1878
+ "normalized": false,
1879
+ "rstrip": false,
1880
+ "single_word": false,
1881
+ "special": true
1882
+ },
1883
+ "128235": {
1884
+ "content": "<|reserved_special_token_227|>",
1885
+ "lstrip": false,
1886
+ "normalized": false,
1887
+ "rstrip": false,
1888
+ "single_word": false,
1889
+ "special": true
1890
+ },
1891
+ "128236": {
1892
+ "content": "<|reserved_special_token_228|>",
1893
+ "lstrip": false,
1894
+ "normalized": false,
1895
+ "rstrip": false,
1896
+ "single_word": false,
1897
+ "special": true
1898
+ },
1899
+ "128237": {
1900
+ "content": "<|reserved_special_token_229|>",
1901
+ "lstrip": false,
1902
+ "normalized": false,
1903
+ "rstrip": false,
1904
+ "single_word": false,
1905
+ "special": true
1906
+ },
1907
+ "128238": {
1908
+ "content": "<|reserved_special_token_230|>",
1909
+ "lstrip": false,
1910
+ "normalized": false,
1911
+ "rstrip": false,
1912
+ "single_word": false,
1913
+ "special": true
1914
+ },
1915
+ "128239": {
1916
+ "content": "<|reserved_special_token_231|>",
1917
+ "lstrip": false,
1918
+ "normalized": false,
1919
+ "rstrip": false,
1920
+ "single_word": false,
1921
+ "special": true
1922
+ },
1923
+ "128240": {
1924
+ "content": "<|reserved_special_token_232|>",
1925
+ "lstrip": false,
1926
+ "normalized": false,
1927
+ "rstrip": false,
1928
+ "single_word": false,
1929
+ "special": true
1930
+ },
1931
+ "128241": {
1932
+ "content": "<|reserved_special_token_233|>",
1933
+ "lstrip": false,
1934
+ "normalized": false,
1935
+ "rstrip": false,
1936
+ "single_word": false,
1937
+ "special": true
1938
+ },
1939
+ "128242": {
1940
+ "content": "<|reserved_special_token_234|>",
1941
+ "lstrip": false,
1942
+ "normalized": false,
1943
+ "rstrip": false,
1944
+ "single_word": false,
1945
+ "special": true
1946
+ },
1947
+ "128243": {
1948
+ "content": "<|reserved_special_token_235|>",
1949
+ "lstrip": false,
1950
+ "normalized": false,
1951
+ "rstrip": false,
1952
+ "single_word": false,
1953
+ "special": true
1954
+ },
1955
+ "128244": {
1956
+ "content": "<|reserved_special_token_236|>",
1957
+ "lstrip": false,
1958
+ "normalized": false,
1959
+ "rstrip": false,
1960
+ "single_word": false,
1961
+ "special": true
1962
+ },
1963
+ "128245": {
1964
+ "content": "<|reserved_special_token_237|>",
1965
+ "lstrip": false,
1966
+ "normalized": false,
1967
+ "rstrip": false,
1968
+ "single_word": false,
1969
+ "special": true
1970
+ },
1971
+ "128246": {
1972
+ "content": "<|reserved_special_token_238|>",
1973
+ "lstrip": false,
1974
+ "normalized": false,
1975
+ "rstrip": false,
1976
+ "single_word": false,
1977
+ "special": true
1978
+ },
1979
+ "128247": {
1980
+ "content": "<|reserved_special_token_239|>",
1981
+ "lstrip": false,
1982
+ "normalized": false,
1983
+ "rstrip": false,
1984
+ "single_word": false,
1985
+ "special": true
1986
+ },
1987
+ "128248": {
1988
+ "content": "<|reserved_special_token_240|>",
1989
+ "lstrip": false,
1990
+ "normalized": false,
1991
+ "rstrip": false,
1992
+ "single_word": false,
1993
+ "special": true
1994
+ },
1995
+ "128249": {
1996
+ "content": "<|reserved_special_token_241|>",
1997
+ "lstrip": false,
1998
+ "normalized": false,
1999
+ "rstrip": false,
2000
+ "single_word": false,
2001
+ "special": true
2002
+ },
2003
+ "128250": {
2004
+ "content": "<|reserved_special_token_242|>",
2005
+ "lstrip": false,
2006
+ "normalized": false,
2007
+ "rstrip": false,
2008
+ "single_word": false,
2009
+ "special": true
2010
+ },
2011
+ "128251": {
2012
+ "content": "<|reserved_special_token_243|>",
2013
+ "lstrip": false,
2014
+ "normalized": false,
2015
+ "rstrip": false,
2016
+ "single_word": false,
2017
+ "special": true
2018
+ },
2019
+ "128252": {
2020
+ "content": "<|reserved_special_token_244|>",
2021
+ "lstrip": false,
2022
+ "normalized": false,
2023
+ "rstrip": false,
2024
+ "single_word": false,
2025
+ "special": true
2026
+ },
2027
+ "128253": {
2028
+ "content": "<|reserved_special_token_245|>",
2029
+ "lstrip": false,
2030
+ "normalized": false,
2031
+ "rstrip": false,
2032
+ "single_word": false,
2033
+ "special": true
2034
+ },
2035
+ "128254": {
2036
+ "content": "<|reserved_special_token_246|>",
2037
+ "lstrip": false,
2038
+ "normalized": false,
2039
+ "rstrip": false,
2040
+ "single_word": false,
2041
+ "special": true
2042
+ },
2043
+ "128255": {
2044
+ "content": "<|reserved_special_token_247|>",
2045
+ "lstrip": false,
2046
+ "normalized": false,
2047
+ "rstrip": false,
2048
+ "single_word": false,
2049
+ "special": true
2050
+ },
2051
+ "128256": {
2052
+ "content": "<|audio|>",
2053
+ "lstrip": false,
2054
+ "normalized": false,
2055
+ "rstrip": false,
2056
+ "single_word": false,
2057
+ "special": true
2058
+ }
2059
+ },
2060
+ "additional_special_tokens": [
2061
+ "<|audio|>"
2062
+ ],
2063
+ "bos_token": "<|begin_of_text|>",
2064
+ "chat_template": "{{- bos_token }}\n{%- if custom_tools is defined %}\n {%- set tools = custom_tools %}\n{%- endif %}\n{%- if not tools_in_user_message is defined %}\n {%- set tools_in_user_message = true %}\n{%- endif %}\n{%- if not date_string is defined %}\n {%- if strftime_now is defined %}\n {%- set date_string = strftime_now(\"%d %b %Y\") %}\n {%- else %}\n {%- set date_string = \"26 Jul 2024\" %}\n {%- endif %}\n{%- endif %}\n{%- if not tools is defined %}\n {%- set tools = none %}\n{%- endif %}\n\n{#- This block extracts the system message, so we can slot it into the right place. #}\n{%- if messages[0]['role'] == 'system' %}\n {%- set system_message = messages[0]['content']|trim %}\n {%- set messages = messages[1:] %}\n{%- else %}\n {%- set system_message = \"\" %}\n{%- endif %}\n\n{#- System message #}\n{{- \"<|start_header_id|>system<|end_header_id|>\\n\\n\" }}\n{%- if tools is not none %}\n {{- \"Environment: ipython\\n\" }}\n{%- endif %}\n{{- \"Cutting Knowledge Date: December 2023\\n\" }}\n{{- \"Today Date: \" + date_string + \"\\n\\n\" }}\n{%- if tools is not none and not tools_in_user_message %}\n {{- \"You have access to the following functions. To call a function, please respond with JSON for a function call.\" }}\n {{- 'Respond in the format {\"name\": function name, \"parameters\": dictionary of argument name and its value}.' }}\n {{- \"Do not use variables.\\n\\n\" }}\n {%- for t in tools %}\n {{- t | tojson(indent=4) }}\n {{- \"\\n\\n\" }}\n {%- endfor %}\n{%- endif %}\n{{- system_message }}\n{{- \"<|eot_id|>\" }}\n\n{#- Custom tools are passed in a user message with some extra guidance #}\n{%- if tools_in_user_message and not tools is none %}\n {#- Extract the first user message so we can plug it in here #}\n {%- if messages | length != 0 %}\n {%- set first_user_message = messages[0]['content']|trim %}\n {%- set messages = messages[1:] %}\n {%- else %}\n {{- raise_exception(\"Cannot put tools in the first user message when there's no first user message!\") }}\n{%- endif %}\n {{- '<|start_header_id|>user<|end_header_id|>\\n\\n' -}}\n {{- \"Given the following functions, please respond with a JSON for a function call \" }}\n {{- \"with its proper arguments that best answers the given prompt.\\n\\n\" }}\n {{- 'Respond in the format {\"name\": function name, \"parameters\": dictionary of argument name and its value}.' }}\n {{- \"Do not use variables.\\n\\n\" }}\n {%- for t in tools %}\n {{- t | tojson(indent=4) }}\n {{- \"\\n\\n\" }}\n {%- endfor %}\n {{- first_user_message + \"<|eot_id|>\"}}\n{%- endif %}\n\n{%- for message in messages %}\n {%- if not (message.role == 'ipython' or message.role == 'tool' or 'tool_calls' in message) %}\n {{- '<|start_header_id|>' + message['role'] + '<|end_header_id|>\\n\\n'+ message['content'] | trim + '<|eot_id|>' }}\n {%- elif 'tool_calls' in message %}\n {%- if not message.tool_calls|length == 1 %}\n {{- raise_exception(\"This model only supports single tool-calls at once!\") }}\n {%- endif %}\n {%- set tool_call = message.tool_calls[0].function %}\n {{- '<|start_header_id|>assistant<|end_header_id|>\\n\\n' -}}\n {{- '{\"name\": \"' + tool_call.name + '\", ' }}\n {{- '\"parameters\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- \"}\" }}\n {{- \"<|eot_id|>\" }}\n {%- elif message.role == \"tool\" or message.role == \"ipython\" %}\n {{- \"<|start_header_id|>ipython<|end_header_id|>\\n\\n\" }}\n {%- if message.content is mapping or message.content is iterable %}\n {{- message.content | tojson }}\n {%- else %}\n {{- message.content }}\n {%- endif %}\n {{- \"<|eot_id|>\" }}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|start_header_id|>assistant<|end_header_id|>\\n\\n' }}\n{%- endif %}\n",
2065
+ "clean_up_tokenization_spaces": true,
2066
+ "eos_token": "<|eot_id|>",
2067
+ "extra_special_tokens": {},
2068
+ "model_input_names": [
2069
+ "input_ids",
2070
+ "attention_mask"
2071
+ ],
2072
+ "model_max_length": 131072,
2073
+ "pad_token": "<|eot_id|>",
2074
+ "tokenizer_class": "PreTrainedTokenizer"
2075
+ }
ultravox_config.py ADDED
@@ -0,0 +1,183 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import dataclasses
2
+ from enum import Enum
3
+ from typing import Any, Dict, List, Optional
4
+
5
+ import transformers
6
+
7
+
8
+ @dataclasses.dataclass
9
+ class LoraConfigSimplified:
10
+ """
11
+ Low Rank Approximation (LoRA) configuration.
12
+
13
+ Used for language and audio models separately.
14
+ """
15
+
16
+ # The rank of the approximation
17
+ r: int = 0
18
+ lora_alpha: float = 8
19
+ target_modules: Optional[List[str]] = dataclasses.field(
20
+ default_factory=lambda: ["k_proj", "q_proj", "linear_k", "linear_q"]
21
+ )
22
+ # A list of module names regex patterns to unfreeze. Only used if r == 0.
23
+ unfreeze_layers: Optional[List[str]] = None
24
+
25
+
26
+ class LossFunction(str, Enum):
27
+ CrossEntropy = "ce"
28
+ KL_Divergence = "kl"
29
+
30
+
31
+ @dataclasses.dataclass
32
+ class LossConfig:
33
+ loss_function: LossFunction = LossFunction.CrossEntropy
34
+ kl_temperature: float = 2.0
35
+ # Number of tokens to ignore from the beginning of the sequence. Only used in LSM
36
+ initial_tokens_to_ignore: int = 0
37
+ # Weight for the EOT token KL loss
38
+ eot_loss_weight: float = 1.0
39
+
40
+ @property
41
+ def requires_alt_fields(self):
42
+ return self.loss_function == LossFunction.KL_Divergence
43
+
44
+
45
+ class UltravoxConfig(transformers.PretrainedConfig):
46
+ r"""
47
+ This is the configuration class to store the configuration of a [`UltravoxForConditionalGeneration`]. It is used to instantiate an
48
+ Ultravox model according to the specified arguments, defining the model architecture.
49
+
50
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
51
+ documentation from [`PretrainedConfig`] for more information.
52
+
53
+ Args:
54
+ audio_config (`WhisperConfig`, *optional*):
55
+ Custom audio config or dict
56
+ text_config (`Union[AutoConfig, dict]`, *optional*):
57
+ The config object of the text backbone. Can be any of `LlamaConfig` or `MistralConfig`.
58
+ ignore_index (`int`, *optional*, defaults to -100):
59
+ The ignore index for the loss function.
60
+ audio_token_index (`int`, *optional*, defaults to 32000):
61
+ The audio token index to encode the audio prompt.
62
+ stack_factor (`int`, *optional*, defaults to 8):
63
+ Audio downsampling factor for the multimodal projector.
64
+ norm_init (`float`, *optional*, defaults to 0.4):
65
+ The initialization value for the layer normalization.
66
+ projector_act (`str`, *optional*, defaults to `"swiglu"`):
67
+ The activation function used by the multimodal projector.
68
+ text_model_lora_config (`LoraConfigSimplified`, *optional*):
69
+ The LoRA configuration for finetuning the text model.
70
+ audio_model_lora_config (`LoraConfigSimplified`, *optional*):
71
+ The LoRA configuration for finetuning the audio model.
72
+ audio_latency_block_size (`int`, *optional*, defaults to `None`):
73
+ The latency block size for simulating audio streaming.
74
+
75
+
76
+ Example:
77
+
78
+ ```python
79
+ >>> from transformers import UltravoxModel, WhisperConfig, UltravoxConfig, LlamaConfig
80
+
81
+ >>> # Initializing an audio encoder config
82
+ >>> audio_config = WhisperConfig()
83
+
84
+ >>> # Initializing a Llama config
85
+ >>> text_config = LlamaConfig()
86
+
87
+ >>> # Initializing a default configuration
88
+ >>> configuration = UltravoxConfig(audio_config, text_config)
89
+
90
+ >>> # Initializing a completely untrained model from the configuration
91
+ >>> model = UltravoxModel(configuration)
92
+
93
+ >>> # Accessing the model configuration
94
+ >>> configuration = model.config
95
+
96
+ >>> # Initialize a model from pretrained checkpoints and random projector weights
97
+ >>> config = UltravoxConfig(audio_model_id="openai/whisper-tiny", text_model_id="meta-llama/Llama-2-7b-chat-hf")
98
+ ```"""
99
+
100
+ model_type = "ultravox"
101
+ is_composition = False
102
+
103
+ def __init__(
104
+ self,
105
+ audio_config: dict[str, Any] | transformers.PretrainedConfig | None = None,
106
+ text_config: dict[str, Any] | transformers.PretrainedConfig | None = None,
107
+ audio_model_id: str | None = None,
108
+ text_model_id: str | None = None,
109
+ ignore_index: int = -100,
110
+ hidden_size: int = 4096,
111
+ stack_factor: int = 8,
112
+ norm_init: float = 0.4,
113
+ projector_act: str = "swiglu",
114
+ projector_ln_mid: bool = False, # defaults to False for compatibility with v0.4.1 and below
115
+ text_model_lora_config: LoraConfigSimplified | None = None,
116
+ audio_model_lora_config: LoraConfigSimplified | None = None,
117
+ audio_latency_block_size: int | None = None,
118
+ **kwargs,
119
+ ):
120
+ self.ignore_index = ignore_index
121
+
122
+ self.audio_model_id = audio_model_id
123
+ self.text_model_id = text_model_id
124
+
125
+ self.hidden_size = hidden_size
126
+ self.stack_factor = stack_factor
127
+ self.norm_init = norm_init
128
+ self.projector_act = projector_act
129
+ self.projector_ln_mid = projector_ln_mid
130
+ if text_model_id is not None:
131
+ text_config = transformers.AutoConfig.from_pretrained(text_model_id)
132
+ else:
133
+ text_config = text_config or {}
134
+ if isinstance(text_config, dict):
135
+ text_config = transformers.CONFIG_MAPPING[
136
+ text_config.get("model_type", "llama")
137
+ ](**text_config)
138
+
139
+ if audio_model_id is not None:
140
+ audio_config = transformers.AutoConfig.from_pretrained(audio_model_id)
141
+ else:
142
+ audio_config = audio_config or {}
143
+ if isinstance(audio_config, dict):
144
+ audio_config = transformers.CONFIG_MAPPING[
145
+ audio_config.get("model_type", "whisper")
146
+ ](**audio_config)
147
+
148
+ self.text_config = text_config
149
+ self.audio_config = audio_config
150
+
151
+ self.text_model_lora_config = (
152
+ text_model_lora_config
153
+ if isinstance(text_model_lora_config, dict)
154
+ else dataclasses.asdict(text_model_lora_config or LoraConfigSimplified())
155
+ )
156
+ self.audio_model_lora_config = (
157
+ audio_model_lora_config
158
+ if isinstance(audio_model_lora_config, dict)
159
+ else dataclasses.asdict(audio_model_lora_config or LoraConfigSimplified())
160
+ )
161
+ self.audio_latency_block_size = audio_latency_block_size
162
+
163
+ self.vocab_size = text_config.vocab_size
164
+
165
+ self.initializer_range = text_config.initializer_range
166
+
167
+ super().__init__(**kwargs)
168
+
169
+ def to_diff_dict(self) -> Dict[str, Any]:
170
+ diff_dict = super().to_diff_dict()
171
+
172
+ # remove text_config and audio_config if text_model_id and audio_model_id are present
173
+ if self.text_model_id is not None:
174
+ diff_dict.pop("text_config", None)
175
+ elif "text_config" in diff_dict:
176
+ diff_dict["text_config"].pop("_attn_implementation_autoset", None)
177
+
178
+ if self.audio_model_id is not None:
179
+ diff_dict.pop("audio_config", None)
180
+ elif "audio_config" in diff_dict:
181
+ diff_dict["audio_config"].pop("_attn_implementation_autoset", None)
182
+
183
+ return diff_dict
ultravox_model.py ADDED
@@ -0,0 +1,965 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import logging
2
+ import re
3
+ from typing import Any, Dict, Generator, Optional, Set, Tuple, TypeVar, Union
4
+
5
+ import accelerate
6
+ import peft
7
+ import torch
8
+ import torch.nn as nn
9
+ import torch.nn.functional as F
10
+ import transformers
11
+ import transformers.activations
12
+ import transformers.modeling_outputs
13
+ import transformers.models
14
+ from transformers.generation.utils import GenerationMixin
15
+ from transformers.models.whisper import modeling_whisper as whisper
16
+
17
+ # We must use relative import in this directory to allow uploading to HF Hub
18
+ # Even "from . import X" pattern doesn't work (undocumented and unclear why)
19
+ from .ultravox_config import LossConfig
20
+ from .ultravox_config import LossFunction
21
+ from .ultravox_config import UltravoxConfig
22
+
23
+ FROM_PRETRAINED_KWARGS = {}
24
+ SHARED_PRETRAINED_KWARGS = [
25
+ "tp_plan",
26
+ "device_map",
27
+ "torch_dtype",
28
+ "attn_implementation",
29
+ "use_flash_attention_2",
30
+ ]
31
+
32
+
33
+ class UltravoxModel(transformers.LlamaPreTrainedModel, GenerationMixin):
34
+ """
35
+ The Ultravox model which consists of an audio encoder and a language model.
36
+
37
+ Audio input is processed by the audio encoder, then every `stack_factor` frames are stacked together and
38
+ projected to the language model's embedding space using a few linear layers.
39
+ The text is embedded by the language model as usual and then the audio and text embeddings are merged together.
40
+
41
+ A special token `<|audio|>` is used to indicate the start of the audio embeddings in the merged embeddings.
42
+
43
+ Parameters:
44
+ config: Model configuration class with all the parameters of the model.
45
+ """
46
+
47
+ config_class = UltravoxConfig
48
+ config: UltravoxConfig # for type hinting
49
+ # Usually we load encoder and LLM weights from a pretrained model separately, so they are allowed to be missing
50
+ _keys_to_ignore_on_load_missing = ["audio_tower.*", "language_model.*"]
51
+ # Since we have kwargs in forward, we need to set this to False, otherwise grad_accum_steps will cause incorrect train loss to be reported
52
+ # see https://github.com/huggingface/transformers/issues/35856 and https://github.com/huggingface/trl/pull/2615/files
53
+ accepts_loss_kwargs = False
54
+
55
+ def __init__(self, config: UltravoxConfig):
56
+ super().__init__(config)
57
+ self._register_load_state_dict_pre_hook(self._pre_load_state_dict_hook)
58
+
59
+ self.keep_params: Set[str] = set()
60
+ self.vocab_size = config.vocab_size
61
+
62
+ self.audio_tower = self._create_audio_tower(config)
63
+ self.audio_tower_context_length: Optional[int] = None
64
+ self.audio_tower_context_length = self.audio_tower.max_context_length
65
+
66
+ self.multi_modal_projector = self._create_multi_modal_projector(config)
67
+ self.language_model = self._create_language_model(config)
68
+
69
+ if self.language_model._tied_weights_keys is not None:
70
+ self._tied_weights_keys = [
71
+ f"language_model.{k}" for k in self.language_model._tied_weights_keys
72
+ ]
73
+
74
+ # Determine no_split_modules dynamically to use with FSDP auto_wrap policy.
75
+ # FSDP throws an error if some of the layer types are not found in the model.
76
+ # This would be something like ["LlamaDecoderLayer"] as we don't split audio encoder layers.
77
+ self._no_split_modules = self.language_model._no_split_modules
78
+
79
+ self.loss_config = LossConfig()
80
+ self.post_init()
81
+
82
+ def _init_weights(self, module):
83
+ if module is self:
84
+ if self.config.text_model_id is not None:
85
+ self.language_model = self._create_language_model(self.config)
86
+ if self.config.audio_model_id is not None:
87
+ self.audio_tower = self._create_audio_tower(self.config)
88
+ elif module in self.language_model.modules():
89
+ pass
90
+ elif module in self.audio_tower.modules():
91
+ pass
92
+ else:
93
+ super()._init_weights(module)
94
+
95
+ @classmethod
96
+ def from_pretrained(cls, *args, **kwargs):
97
+ global FROM_PRETRAINED_KWARGS
98
+ FROM_PRETRAINED_KWARGS = {
99
+ k: v for k, v in kwargs.items() if k in SHARED_PRETRAINED_KWARGS
100
+ }
101
+ model = super().from_pretrained(*args, **kwargs)
102
+ FROM_PRETRAINED_KWARGS = {}
103
+ return model
104
+
105
+ def get_input_embeddings(self):
106
+ return self.language_model.get_input_embeddings()
107
+
108
+ def set_input_embeddings(self, value):
109
+ self.language_model.set_input_embeddings(value)
110
+
111
+ def get_output_embeddings(self):
112
+ return self.language_model.get_output_embeddings()
113
+
114
+ def set_output_embeddings(self, new_embeddings):
115
+ self.language_model.set_output_embeddings(new_embeddings)
116
+
117
+ def set_decoder(self, decoder):
118
+ self.language_model.set_decoder(decoder)
119
+
120
+ def get_decoder(self):
121
+ return self.language_model.get_decoder()
122
+
123
+ def tie_weights(self):
124
+ return self.language_model.tie_weights()
125
+
126
+ def set_loss_config(self, loss_config: LossConfig):
127
+ self.loss_config = loss_config
128
+
129
+ def _setup_cache(
130
+ self, cache_cls, max_batch_size: int, max_cache_len: Optional[int] = None
131
+ ):
132
+ self.language_model._setup_cache(cache_cls, max_batch_size, max_cache_len)
133
+
134
+ def _reorder_cache(self, past_key_values, beam_idx):
135
+ return self.language_model._reorder_cache(past_key_values, beam_idx)
136
+
137
+ def resize_token_embeddings(
138
+ self,
139
+ new_num_tokens: Optional[int] = None,
140
+ pad_to_multiple_of: Optional[int] = None,
141
+ ) -> nn.Embedding:
142
+ model_embeds = self.language_model.resize_token_embeddings(
143
+ new_num_tokens, pad_to_multiple_of
144
+ )
145
+ # update vocab size
146
+ self.config.text_config.vocab_size = model_embeds.num_embeddings
147
+ self.config.vocab_size = model_embeds.num_embeddings
148
+ self.vocab_size = model_embeds.num_embeddings
149
+ return model_embeds
150
+
151
+ def _get_prediction_mask(
152
+ self, labels: Optional[torch.Tensor]
153
+ ) -> Tuple[torch.Tensor, torch.Tensor]:
154
+ """Get boolean masks for positions where we want to compute KL divergence.
155
+
156
+ For each label position, we want the position before it since that's where
157
+ the model makes the prediction for that label.
158
+
159
+ Additionally, we want to identify the position right before the EOT token
160
+ (the last token with label != -100).
161
+
162
+ Args:
163
+ labels: Tensor of shape (B, T) where B is batch size and T is sequence length,
164
+ with -100 for masked positions and token ids for label positions
165
+
166
+ Returns:
167
+ Tuple containing:
168
+ - pred_mask: Boolean tensor of shape (B, T) that's True for positions where we want to compute KL divergence
169
+ - eot_mask: Boolean tensor of shape (B, T) that's True only for the last prediction position in each sequence
170
+ """
171
+ if labels is None:
172
+ raise ValueError("labels must be provided")
173
+
174
+ # Shift the label mask right by 1 along the sequence dimension
175
+ # This gives us positions where we make predictions for the next token
176
+ label_mask = labels != -100
177
+ pred_mask = torch.zeros_like(label_mask)
178
+ pred_mask[:, :-1] = label_mask[
179
+ :, 1:
180
+ ] # shift right by 1 along sequence dimension
181
+
182
+ # Create EOT mask - identify only the last prediction position in each sequence
183
+ eot_mask = torch.zeros_like(pred_mask)
184
+ batch_size = labels.shape[0]
185
+
186
+ for i in range(batch_size):
187
+ # Find positions where we make predictions
188
+ pred_positions = torch.where(pred_mask[i])[0]
189
+ if len(pred_positions) > 0:
190
+ # Only mark the last prediction position
191
+ eot_mask[i, pred_positions[-1]] = True
192
+
193
+ return pred_mask, eot_mask
194
+
195
+ def _compute_kl_loss(
196
+ self,
197
+ lm_output: transformers.modeling_outputs.CausalLMOutputWithPast,
198
+ labels: Optional[torch.Tensor] = None,
199
+ past_key_values: Optional[Union[Tuple, transformers.cache_utils.Cache]] = None,
200
+ alt_input_ids: Optional[torch.Tensor] = None,
201
+ alt_attention_mask: Optional[torch.Tensor] = None,
202
+ alt_labels: Optional[torch.Tensor] = None,
203
+ **kwargs,
204
+ ):
205
+ # disable gradient computation for the teacher model
206
+ with torch.no_grad():
207
+ # compute the teacher (text-only) model's distribution
208
+ alt_inputs_embeds = self.get_input_embeddings().forward(alt_input_ids)
209
+ alt_lm_output = self.language_model.forward(
210
+ inputs_embeds=alt_inputs_embeds,
211
+ labels=alt_labels,
212
+ attention_mask=alt_attention_mask,
213
+ past_key_values=past_key_values,
214
+ **kwargs,
215
+ )
216
+
217
+ # Get prediction masks for regular tokens and EOT tokens
218
+ pred_mask, eot_mask = self._get_prediction_mask(labels)
219
+ alt_pred_mask, alt_eot_mask = self._get_prediction_mask(alt_labels)
220
+
221
+ # compute the KL divergence loss between the two models for regular tokens
222
+ kl_loss = F.kl_div(
223
+ F.log_softmax(
224
+ lm_output.logits[pred_mask] / self.loss_config.kl_temperature,
225
+ dim=-1,
226
+ ),
227
+ F.softmax(
228
+ alt_lm_output.logits[alt_pred_mask] / self.loss_config.kl_temperature,
229
+ dim=-1,
230
+ ),
231
+ reduction="batchmean",
232
+ )
233
+
234
+ # Compute the KL divergence loss for EOT token positions if any exist
235
+ eot_loss = F.kl_div(
236
+ F.log_softmax(
237
+ lm_output.logits[eot_mask] / self.loss_config.kl_temperature,
238
+ dim=-1,
239
+ ),
240
+ F.softmax(
241
+ alt_lm_output.logits[alt_eot_mask] / self.loss_config.kl_temperature,
242
+ dim=-1,
243
+ ),
244
+ reduction="batchmean",
245
+ )
246
+
247
+ return {"loss": kl_loss + self.loss_config.eot_loss_weight * eot_loss}
248
+
249
+ def _audio_iter(
250
+ self, audio_batch_size: torch.Tensor
251
+ ) -> Generator[Tuple[int, int], None, None]:
252
+ """
253
+ Iterate over the audio batch size and yield the batch index and audio index of each audio item.
254
+
255
+ Args:
256
+ audio_batch_size: A tensor of shape (B,) where B is the batch size.
257
+
258
+ Returns:
259
+ A generator that yields a tuple of (start index, length) for each audio item.
260
+ """
261
+ audio_index = 0
262
+ for i_b, batch_count in enumerate(audio_batch_size):
263
+ for _ in range(batch_count):
264
+ yield i_b, audio_index
265
+ audio_index += 1
266
+
267
+ def forward(
268
+ self,
269
+ input_ids: torch.Tensor,
270
+ audio_values: Optional[torch.FloatTensor] = None,
271
+ inputs_embeds: Optional[torch.FloatTensor] = None,
272
+ labels: Optional[torch.Tensor] = None,
273
+ attention_mask: Optional[torch.Tensor] = None,
274
+ audio_token_start_idx: Optional[torch.Tensor] = None,
275
+ audio_lens: Optional[torch.Tensor] = None,
276
+ audio_token_len: Optional[torch.Tensor] = None,
277
+ audio_batch_size: Optional[torch.Tensor] = None,
278
+ past_key_values: Optional[Union[Tuple, transformers.cache_utils.Cache]] = None,
279
+ # the alt_* fields are needed for KL divergence loss
280
+ alt_input_ids: Optional[torch.Tensor] = None,
281
+ alt_attention_mask: Optional[torch.Tensor] = None,
282
+ alt_labels: Optional[torch.Tensor] = None,
283
+ **kwargs,
284
+ ) -> Union[Tuple, transformers.modeling_outputs.CausalLMOutputWithPast]:
285
+ """
286
+ Forward pass for the Ultravox model.
287
+
288
+ `input_ids` are the tokenized text input. They are embedded by the language model as usual.
289
+ `audio_values` are processed by the audio encoder and then every `stack_factor` frames are stacked together and
290
+ projected to the language model's embedding space using a few linear layers.
291
+ The audio and text embeddings are merged together. A special token `<|audio|>` is used to indicate the start
292
+ of the audio embeddings in the merged embeddings.
293
+
294
+ Args:
295
+ input_ids: The tokenized text input.
296
+ audio_values: The processed audio values.
297
+ inputs_embeds: The embeddings for the input tokens.
298
+ labels: The tokenized text labels.
299
+ attention_mask: The attention mask for the input.
300
+ position_ids: The position ids for the input.
301
+ past_key_values: The past key value cache for the language model attention layers.
302
+ **kwargs: Additional keyword arguments. Passed directly to the language model.
303
+ """
304
+ if inputs_embeds is None:
305
+ # B x T -> B x T x D
306
+ inputs_embeds = self.get_input_embeddings().forward(input_ids)
307
+
308
+ if audio_values is not None and len(audio_values) > 0:
309
+ assert (
310
+ audio_token_start_idx is not None
311
+ and audio_token_len is not None
312
+ and audio_lens is not None
313
+ and audio_batch_size is not None
314
+ ), "audio_token_start_idx/audio_token_len/audio_lens must be provided if audio_values are provided."
315
+ assert (
316
+ len(audio_token_start_idx)
317
+ == len(audio_token_len)
318
+ == len(audio_lens)
319
+ == len(audio_values)
320
+ ), "audio_token_start_idx/audio_token_len/audio_lens/audio_values must have the same batch size."
321
+ assert len(audio_batch_size) == len(
322
+ inputs_embeds
323
+ ), "audio_batch_size and inputs_embeds must have the same batch size."
324
+
325
+ # B x A/3200 x (D=max-audio-length-in-batch)
326
+ audio_tower_output = self.audio_tower.forward(
327
+ audio_values.to(self.audio_tower.dtype),
328
+ audio_len=audio_lens,
329
+ ).last_hidden_state
330
+ audio_tower_output = audio_tower_output.to(inputs_embeds.dtype)
331
+ audio_embeds = self.multi_modal_projector.forward(audio_tower_output)
332
+
333
+ # combine audio and text embeddings
334
+ for i_b, i_a in self._audio_iter(audio_batch_size):
335
+ start_idx = audio_token_start_idx[i_a]
336
+ token_len = audio_token_len[i_a]
337
+ item_embedding = audio_embeds[i_a][:token_len]
338
+ inputs_embeds[i_b][start_idx : start_idx + token_len] = item_embedding
339
+
340
+ lm_output = self.language_model.forward(
341
+ inputs_embeds=inputs_embeds,
342
+ labels=labels,
343
+ attention_mask=attention_mask,
344
+ past_key_values=past_key_values,
345
+ **kwargs,
346
+ )
347
+ if self.training:
348
+ if self.loss_config.loss_function == LossFunction.CrossEntropy:
349
+ return lm_output
350
+ elif self.loss_config.loss_function == LossFunction.KL_Divergence:
351
+ return self._compute_kl_loss(
352
+ lm_output=lm_output,
353
+ labels=labels,
354
+ past_key_values=past_key_values,
355
+ alt_input_ids=alt_input_ids,
356
+ alt_attention_mask=alt_attention_mask,
357
+ alt_labels=alt_labels,
358
+ **kwargs,
359
+ )
360
+ else:
361
+ raise ValueError(
362
+ f"Unsupported loss function: {self.loss_config.loss_function}"
363
+ )
364
+ else:
365
+ return lm_output
366
+
367
+ def prepare_inputs_for_generation(
368
+ self,
369
+ input_ids: torch.Tensor,
370
+ audio_values: Optional[torch.FloatTensor] = None,
371
+ audio_token_start_idx: Optional[torch.Tensor] = None,
372
+ audio_token_len: Optional[torch.Tensor] = None,
373
+ audio_lens: Optional[torch.Tensor] = None,
374
+ audio_batch_size: Optional[torch.Tensor] = None,
375
+ past_key_values: Optional[Union[Tuple, transformers.cache_utils.Cache]] = None,
376
+ attention_mask: Optional[torch.Tensor] = None,
377
+ inputs_embeds: Optional[torch.Tensor] = None,
378
+ cache_position: Optional[torch.Tensor] = None,
379
+ **kwargs,
380
+ ) -> Dict[str, Any]:
381
+ model_input = self.language_model.prepare_inputs_for_generation(
382
+ input_ids=input_ids,
383
+ past_key_values=past_key_values,
384
+ attention_mask=attention_mask,
385
+ inputs_embeds=inputs_embeds,
386
+ cache_position=cache_position,
387
+ **kwargs,
388
+ )
389
+
390
+ # include audio information in model_input only when it is needed during prefilling
391
+ # audio_token_start_idx should always be relative to the current cache position
392
+ prefill_start_idx: int | torch.Tensor = (
393
+ 0 if cache_position is None else cache_position[0]
394
+ )
395
+ if (
396
+ audio_values is not None
397
+ and audio_token_start_idx is not None
398
+ and prefill_start_idx <= torch.max(audio_token_start_idx)
399
+ ):
400
+ model_input["audio_values"] = audio_values
401
+ model_input["audio_token_start_idx"] = (
402
+ audio_token_start_idx - prefill_start_idx
403
+ )
404
+ model_input["audio_token_len"] = audio_token_len
405
+ model_input["audio_batch_size"] = audio_batch_size
406
+ model_input["audio_lens"] = audio_lens
407
+
408
+ return model_input
409
+
410
+ @classmethod
411
+ def _create_multi_modal_projector(
412
+ cls, config: UltravoxConfig
413
+ ) -> "UltravoxProjector":
414
+ projector = UltravoxProjector(config)
415
+ dtype = config.torch_dtype
416
+ if isinstance(dtype, str):
417
+ dtype = getattr(torch, dtype)
418
+ projector.to(dtype)
419
+ return projector
420
+
421
+ @classmethod
422
+ def _create_audio_tower(
423
+ cls, config: UltravoxConfig
424
+ ) -> Union[transformers.Wav2Vec2Model, "ModifiedWhisperEncoder"]:
425
+ # We probably don't want to pass tp_plan or device_map to the audio tower
426
+ # But potentially other kwargs can be passed in. TODO
427
+ kwargs = {"torch_dtype": config.torch_dtype}
428
+ if (
429
+ transformers.modeling_utils._init_weights
430
+ and config.audio_model_id is not None
431
+ ):
432
+ if "whisper" in config.audio_model_id.lower():
433
+ audio_tower = ModifiedWhisperEncoder.from_pretrained(
434
+ config.audio_model_id, **kwargs
435
+ )
436
+ audio_tower.init_latency_mask(
437
+ config.audio_latency_block_size, dtype=config.torch_dtype
438
+ )
439
+ else:
440
+ assert config.audio_latency_block_size in (
441
+ None,
442
+ 0,
443
+ ), "only whisper audio tower supports audio latency masking, got non-zero value for 'audio_latency_block_size'"
444
+ audio_tower = transformers.AutoModel.from_pretrained(
445
+ config.audio_model_id, **kwargs
446
+ )
447
+ else:
448
+ with accelerate.init_empty_weights():
449
+ if "whisper" in config.audio_config._name_or_path.lower():
450
+ audio_tower = ModifiedWhisperEncoder(config.audio_config)
451
+ audio_tower.init_latency_mask(
452
+ config.audio_latency_block_size,
453
+ dtype=config.torch_dtype,
454
+ )
455
+ else:
456
+ assert config.audio_latency_block_size in (
457
+ None,
458
+ 0,
459
+ ), "only whisper audio tower supports audio latency masking, got non-zero value for 'audio_latency_block_size'"
460
+ # we only ever use from_config if the weights are retrained, hence initializing is not
461
+ # required. This makes the model quite creation faster since init on CPU is quite slow.
462
+ audio_tower = transformers.AutoModel.from_config(
463
+ config.audio_config, **kwargs
464
+ )
465
+
466
+ if isinstance(
467
+ audio_tower,
468
+ (transformers.Wav2Vec2BertModel, transformers.WhisperModel),
469
+ ):
470
+ # For these models we only need the encoder part
471
+ # Wav2Vec2BertModel -> Wav2Vec2BertEncoder
472
+ # WhisperModel -> WhisperEncoder
473
+ audio_tower = audio_tower.encoder
474
+
475
+ audio_tower = apply_lora(audio_tower, config.audio_model_lora_config)
476
+ return audio_tower
477
+
478
+ @classmethod
479
+ def _create_language_model(
480
+ cls, config: UltravoxConfig
481
+ ) -> transformers.LlamaForCausalLM:
482
+ if (
483
+ transformers.modeling_utils._init_weights
484
+ and config.text_model_id is not None
485
+ ):
486
+ language_model = transformers.AutoModelForCausalLM.from_pretrained(
487
+ config.text_model_id,
488
+ **{
489
+ "attn_implementation": config.text_config._attn_implementation,
490
+ "torch_dtype": config.torch_dtype,
491
+ **FROM_PRETRAINED_KWARGS,
492
+ },
493
+ )
494
+ else:
495
+ with accelerate.init_empty_weights():
496
+ # we only ever use from_config if the weights are retrained, hence initializing is not
497
+ # required. This makes the model quite creation faster since init on CPU is quite slow.
498
+ language_model = transformers.AutoModelForCausalLM.from_config(
499
+ config.text_config,
500
+ attn_implementation=config.text_config._attn_implementation,
501
+ torch_dtype=config.torch_dtype,
502
+ )
503
+
504
+ language_model = apply_lora(language_model, config.text_model_lora_config)
505
+ return language_model
506
+
507
+ def merge_and_unload(self):
508
+ if isinstance(self.language_model, peft.PeftModel):
509
+ self.language_model = self.language_model.merge_and_unload()
510
+ # no need to download base language model weights anymore, so we can remove the id
511
+ self.config.text_model_id = None
512
+ self.keep_params.update(
513
+ set(
514
+ [
515
+ f"language_model.{name}"
516
+ for name, _ in self.language_model.named_parameters()
517
+ ]
518
+ )
519
+ )
520
+
521
+ if isinstance(self.audio_tower, peft.PeftModel):
522
+ self.audio_tower = self.audio_tower.merge_and_unload()
523
+ # no need to download base audio model weights anymore, so we can remove the id
524
+ self.config.audio_model_id = None
525
+ self.keep_params.update(
526
+ set(
527
+ [
528
+ f"audio_tower.{name}"
529
+ for name, _ in self.audio_tower.named_parameters()
530
+ ]
531
+ )
532
+ )
533
+
534
+ for param in ["text_model_lora_config", "audio_model_lora_config"]:
535
+ if hasattr(self.config, param):
536
+ delattr(self.config, param)
537
+
538
+ def push_to_hub(self, *args, **kwargs):
539
+ self.merge_and_unload()
540
+ return super().push_to_hub(*args, **kwargs)
541
+
542
+ def diff_state_dict(
543
+ self, state_dict: Optional[Dict[str, Any]] = None
544
+ ) -> Dict[str, Any]:
545
+ if state_dict is None:
546
+ state_dict = super().state_dict()
547
+
548
+ trainable_params = {k for k, v in self.named_parameters() if v.requires_grad}
549
+ # normalize the keys to match the original model
550
+ # Example: audio_tower.base_model.model.layers.0._fsdp_wrapped_module.self_attn.k_proj.lora_B.default.weight
551
+ trainable_params = {
552
+ k.replace("_fsdp_wrapped_module.", "") for k in trainable_params
553
+ }
554
+
555
+ state_dict = {
556
+ k: v
557
+ for k, v in state_dict.items()
558
+ if k in self.keep_params or k in trainable_params
559
+ }
560
+
561
+ return state_dict
562
+
563
+ def save_pretrained(
564
+ self, *args, state_dict: Optional[Dict[str, Any]] = None, **kwargs
565
+ ):
566
+ state_dict = self.diff_state_dict(state_dict)
567
+
568
+ super().save_pretrained(*args, state_dict=state_dict, **kwargs)
569
+
570
+ def _pre_load_state_dict_hook(self, state_dict: Dict[str, Any], *args, **kwargs):
571
+ self.keep_params.update(set(state_dict.keys()))
572
+
573
+ def print_trainable_parameters(self):
574
+ """
575
+ Prints the number of trainable parameters in the model (reuses Peft model's method)
576
+ """
577
+ count_params = peft.peft_model.PeftModel.get_nb_trainable_parameters
578
+
579
+ trainable_params, all_param = count_params(self)
580
+
581
+ logging.info(
582
+ f"trainable params: {trainable_params:,d} || all params: {all_param:,d}"
583
+ f" || trainable%: {100 * trainable_params / all_param:.1f}%"
584
+ )
585
+
586
+ lm_trainable_params, lm_all_params = count_params(self.language_model)
587
+ audio_trainable_params, audio_all_params = count_params(self.audio_tower)
588
+
589
+ projector_trainable_params = (
590
+ trainable_params - lm_trainable_params - audio_trainable_params
591
+ )
592
+ projector_all_params = all_param - lm_all_params - audio_all_params
593
+
594
+ logging.info(
595
+ f"Trainable%: "
596
+ f" LLM: {100 * lm_trainable_params / lm_all_params:.1f}%"
597
+ f" || Audio Encoder: {100 * audio_trainable_params / audio_all_params:.1f}%"
598
+ f" || Projector: {100 * projector_trainable_params / projector_all_params:.1f}%"
599
+ )
600
+
601
+
602
+ def get_checkpoint_files(
603
+ model_id: str,
604
+ ) -> tuple[list[str], dict | None, list[str]]:
605
+ resolved_archive_file = transformers.utils.cached_file(
606
+ model_id,
607
+ transformers.utils.SAFE_WEIGHTS_NAME,
608
+ _raise_exceptions_for_missing_entries=False,
609
+ )
610
+
611
+ if resolved_archive_file is not None:
612
+ # not sharded
613
+ sharded_metadata = None
614
+ state_dict = transformers.modeling_utils.load_state_dict(resolved_archive_file)
615
+ loaded_state_dict_keys = list(state_dict.keys())
616
+ else:
617
+ # sharded
618
+ resolved_archive_file = transformers.utils.cached_file(
619
+ model_id, transformers.utils.SAFE_WEIGHTS_INDEX_NAME
620
+ )
621
+ resolved_archive_file, sharded_metadata = (
622
+ transformers.modeling_utils.get_checkpoint_shard_files(
623
+ model_id,
624
+ resolved_archive_file,
625
+ )
626
+ )
627
+ loaded_state_dict_keys = sharded_metadata["all_checkpoint_keys"]
628
+
629
+ if isinstance(resolved_archive_file, str):
630
+ resolved_archive_file = [resolved_archive_file]
631
+
632
+ return resolved_archive_file, sharded_metadata, loaded_state_dict_keys
633
+
634
+
635
+ # TODO: refactor common parts to a shared module
636
+ def is_cache_empty(
637
+ past_key_values: Optional[Union[Tuple, transformers.cache_utils.Cache]],
638
+ ) -> bool:
639
+ """
640
+ Check if the cache is empty.
641
+ """
642
+ if past_key_values is None:
643
+ return True
644
+ if isinstance(past_key_values, tuple):
645
+ return all(len(c) == 0 for c in past_key_values)
646
+ return past_key_values.get_seq_length() == 0
647
+
648
+
649
+ T = TypeVar("T", bound=torch.nn.Module)
650
+
651
+
652
+ def apply_lora(model: T, lora_config: dict) -> T:
653
+ """
654
+ Applies LoRA finetuning to the model. If the `r` parameter is set to 0, the model is frozen instead.
655
+ """
656
+ unfreeze_layers = lora_config.pop("unfreeze_layers", None)
657
+ lora_config = peft.LoraConfig(**lora_config or {})
658
+
659
+ if lora_config.r == 0:
660
+ # freeze the model entirely, except for the specified layers
661
+ for name, param in model.named_parameters():
662
+ if not unfreeze_layers or not any(
663
+ re.match(layer, name) for layer in unfreeze_layers
664
+ ):
665
+ param.requires_grad = False
666
+ else:
667
+ logging.info(f"Unfreezing layer: {name} with #{param.numel()} params")
668
+ else:
669
+ model = peft.get_peft_model(model, lora_config)
670
+
671
+ return model
672
+
673
+
674
+ class StackAudioFrames(nn.Module):
675
+ """
676
+ Stack the audio embedding frames to reduce the sequence length by a factor
677
+ of `stack_factor`.
678
+ """
679
+
680
+ def __init__(self, stack_factor: int = 8):
681
+ super().__init__()
682
+ self.stack_factor = stack_factor
683
+
684
+ def forward(self, audio_embeds: torch.Tensor) -> torch.Tensor:
685
+ B, T, C = audio_embeds.shape
686
+ T_pad = (T + self.stack_factor - 1) // self.stack_factor * self.stack_factor
687
+ audio_embeds = F.pad(audio_embeds, (0, 0, 0, T_pad - T))
688
+ B, T, C = audio_embeds.shape
689
+ audio_embeds = audio_embeds.view(
690
+ B, T // self.stack_factor, C * self.stack_factor
691
+ )
692
+ return audio_embeds
693
+
694
+
695
+ class RMSNorm(transformers.models.llama.modeling_llama.LlamaRMSNorm):
696
+ def __init__(self, hidden_size: int, init: float = 1, eps: float = 1e-6):
697
+ super().__init__(hidden_size=hidden_size, eps=eps)
698
+ self.weight.data.fill_(init)
699
+
700
+
701
+ class SwiGLU(nn.Module):
702
+ def forward(self, x):
703
+ x, gate = x.chunk(2, dim=-1)
704
+ return F.silu(gate) * x
705
+
706
+
707
+ class UltravoxProjector(nn.Module):
708
+ def __init__(self, config: UltravoxConfig):
709
+ super().__init__()
710
+ self.hidden_dim = config.hidden_size
711
+ self._pad_and_stack = StackAudioFrames(config.stack_factor)
712
+ dim_in = config.audio_config.hidden_size * config.stack_factor
713
+ self.ln_pre = RMSNorm(dim_in, init=config.norm_init)
714
+ self.linear_1 = nn.Linear(dim_in, self.hidden_dim, bias=False)
715
+ dim_mid = self.hidden_dim
716
+ self.act = transformers.activations.get_activation(config.projector_act)
717
+ dim_mid = dim_mid // 2 if config.projector_act == "swiglu" else dim_mid
718
+ dim_out = config.text_config.hidden_size
719
+ self.linear_2 = nn.Linear(dim_mid, dim_out, bias=False)
720
+
721
+ # Ultravox v0.4.1 and below uses layer_norm after the second linear layer,
722
+ # while v0.5.0 and above uses layer_norm after the first linear layer.
723
+ if config.projector_ln_mid:
724
+ self.ln_mid: nn.Module = RMSNorm(dim_mid, init=config.norm_init)
725
+ self.ln_post: nn.Module = nn.Identity()
726
+ else:
727
+ self.ln_mid = nn.Identity()
728
+ self.ln_post = RMSNorm(dim_out, init=config.norm_init)
729
+
730
+ def forward(self, audio_features: torch.Tensor) -> torch.Tensor:
731
+ """
732
+ Takes in audio features from the audio tower and projects them to the text model's embedding space.
733
+ It reduces the number of frames by a factor of `stack_factor` and increases the number of channels by the same factor.
734
+ If the number of audio frames are not a multiple of the stack factor, the last few frames will be padded with zeros.
735
+
736
+ Input shape:
737
+ audio_features: B, T*S, C
738
+ Output shape:
739
+ hidden_states: B, T, D
740
+ Where:
741
+ B: batch size
742
+ F: number of frames in the audio tower
743
+ T: number of output embeddings
744
+ T = ceil(F / S)
745
+ S: stack factor
746
+ C: number of channels out of the encoder (aka audio tower)
747
+ H: hidden size of the projector (config.hidden_size)
748
+ D: dimension of the text model (config.text_config.hidden_size)
749
+
750
+ """
751
+ # B, F, C -> B, T, C*S
752
+ audio_features = self._pad_and_stack(audio_features)
753
+ audio_features = self.ln_pre(audio_features)
754
+ # B, T, C*S -> B, T, H
755
+ hidden_states = self.linear_1(audio_features)
756
+ # B, T, H -> B, T, H/2 (assuming swiglu)
757
+ hidden_states = self.act(hidden_states)
758
+ hidden_states = self.ln_mid(hidden_states)
759
+ # B, T, H/2 -> B, T, D
760
+ hidden_states = self.linear_2(hidden_states)
761
+ hidden_states = self.ln_post(hidden_states)
762
+ return hidden_states
763
+
764
+
765
+ class ModifiedWhisperEncoder(
766
+ whisper.WhisperEncoder, transformers.modeling_utils.ModuleUtilsMixin
767
+ ):
768
+ """
769
+ Encoder portion of OpenAI's Whisper model.
770
+
771
+ This implementation is a slightly modified version of HF Transformers' Whisper Encoder, with only a few fixes:
772
+ 1. base_model_prefix updated to allow for doing `.from_pretrained` directly on the encoder
773
+ 2. allow less than 30 second of audio padding to be passed in:
774
+ - relaxed ValueError check for `input_features` length to be less than or equal to `expected_seq_length` instead of strictly equal
775
+ - embed_pos is now sliced to match the length of `inputs_embeds`
776
+
777
+ Original: https://github.com/huggingface/transformers/blob/main/src/transformers/models/whisper/modeling_whisper.py
778
+ """
779
+
780
+ base_model_prefix = "model.encoder"
781
+ _no_split_modules = ["WhisperEncoderLayer"]
782
+ _keys_to_ignore_on_load_unexpected = ["model.decoder.*"]
783
+
784
+ def __init__(self, config: transformers.WhisperConfig):
785
+ super().__init__(config)
786
+ self.config.is_decoder = False
787
+
788
+ @property
789
+ def max_context_length(self):
790
+ return (
791
+ self.config.max_source_positions
792
+ * self.conv1.stride[0]
793
+ * self.conv2.stride[0]
794
+ )
795
+
796
+ def init_latency_mask(
797
+ self, audio_latency_block_size: int | None, dtype: torch.dtype
798
+ ):
799
+ if audio_latency_block_size is None:
800
+ self.audio_streaming_mask = None
801
+ return
802
+
803
+ # Use max_context_length directly in the calculation
804
+ max_seqlen = self.max_context_length
805
+ assert (
806
+ max_seqlen > 0
807
+ ), f"maximum sequence length must be positive, got {max_seqlen}"
808
+ assert (
809
+ max_seqlen % audio_latency_block_size == 0
810
+ ), f"audio_latency_block_size {audio_latency_block_size} must divide {max_seqlen} evenly."
811
+ # Given the block size, we calculate number of blocks.
812
+ audio_latency_nblocks = max_seqlen // audio_latency_block_size
813
+ audio_streaming_mask = (
814
+ torch.tril(
815
+ torch.ones(audio_latency_nblocks, audio_latency_nblocks),
816
+ diagonal=0,
817
+ )
818
+ .repeat_interleave(audio_latency_block_size, dim=0)
819
+ .repeat_interleave(audio_latency_block_size, dim=1)
820
+ )
821
+ audio_streaming_mask = (1.0 - audio_streaming_mask) * torch.finfo(dtype).min
822
+ audio_streaming_mask = audio_streaming_mask[None, None, :, :]
823
+ self.register_buffer(
824
+ "audio_streaming_mask", audio_streaming_mask, persistent=False
825
+ )
826
+
827
+ def forward(
828
+ self,
829
+ input_features,
830
+ audio_len=None,
831
+ head_mask=None,
832
+ output_attentions=None,
833
+ output_hidden_states=None,
834
+ return_dict=None,
835
+ ):
836
+ expected_seq_length = self.max_context_length
837
+ if input_features.shape[-1] > expected_seq_length:
838
+ raise ValueError(
839
+ f"Whisper expects the mel input features to be of length {expected_seq_length} or less, but found {input_features.shape[-1]}. Make sure to pad the input mel features to {expected_seq_length}."
840
+ )
841
+
842
+ output_attentions = (
843
+ output_attentions
844
+ if output_attentions is not None
845
+ else self.config.output_attentions
846
+ )
847
+ output_hidden_states = (
848
+ output_hidden_states
849
+ if output_hidden_states is not None
850
+ else self.config.output_hidden_states
851
+ )
852
+ return_dict = (
853
+ return_dict if return_dict is not None else self.config.use_return_dict
854
+ )
855
+ inputs_embeds = nn.functional.gelu(self.conv1(input_features))
856
+ inputs_embeds = nn.functional.gelu(self.conv2(inputs_embeds))
857
+
858
+ inputs_embeds = inputs_embeds.permute(0, 2, 1)
859
+ embed_pos = self.embed_positions.weight[: inputs_embeds.size(-2)]
860
+
861
+ hidden_states = inputs_embeds + embed_pos
862
+ hidden_states = nn.functional.dropout(
863
+ hidden_states, p=self.dropout, training=self.training
864
+ )
865
+
866
+ encoder_states = () if output_hidden_states else None
867
+ all_attentions = () if output_attentions else None
868
+
869
+ # Create attention mask based on audio lengths to mask out padding tokens
870
+ # For each sample in batch:
871
+ # - Convert raw audio length to feature length after convolutions
872
+ # - Create boolean mask that is True for valid positions and False for padding
873
+ # - Convert to extended attention mask format expected by transformer layers
874
+ # (1.0 for positions to attend to, large negative for positions to ignore)
875
+ # This masking ensures consistent behavior between training and inference
876
+ # by preventing the model from attending to padding tokens in both cases
877
+ attention_mask = None
878
+ if audio_len != None:
879
+ audio_feature_len = self._get_feat_extract_output_lengths(audio_len)
880
+ max_seq_len = hidden_states.shape[1]
881
+ attention_mask = torch.arange(max_seq_len, device=hidden_states.device)[
882
+ None, :
883
+ ].lt(audio_feature_len.view(-1, 1))
884
+ attention_mask = self.get_extended_attention_mask(
885
+ attention_mask,
886
+ None,
887
+ dtype=hidden_states.dtype,
888
+ )
889
+
890
+ if self.audio_streaming_mask is not None:
891
+ seqlen = hidden_states.size(-2)
892
+ if attention_mask is not None:
893
+ attention_mask = torch.minimum(
894
+ self.audio_streaming_mask[:, :, :seqlen, :seqlen], attention_mask
895
+ ) # merge
896
+ else:
897
+ attention_mask = self.audio_streaming_mask[:, :, :seqlen, :seqlen]
898
+ attention_mask = attention_mask.to(hidden_states.dtype)
899
+
900
+ # check if head_mask has a correct number of layers specified if desired
901
+ if head_mask is not None:
902
+ assert head_mask.size()[0] == (
903
+ len(self.layers)
904
+ ), f"The head_mask should be specified for {len(self.layers)} layers, but it is for {head_mask.size()[0]}."
905
+
906
+ for idx, encoder_layer in enumerate(self.layers):
907
+ if output_hidden_states:
908
+ encoder_states = encoder_states + (hidden_states,)
909
+ # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
910
+ to_drop = False
911
+ if self.training:
912
+ dropout_probability = torch.rand([])
913
+ if dropout_probability < self.layerdrop: # skip the layer
914
+ to_drop = True
915
+
916
+ if to_drop:
917
+ layer_outputs = (None, None)
918
+ else:
919
+ if self.gradient_checkpointing and self.training:
920
+ layer_outputs = self._gradient_checkpointing_func(
921
+ encoder_layer.__call__,
922
+ hidden_states,
923
+ attention_mask,
924
+ (head_mask[idx] if head_mask is not None else None),
925
+ output_attentions,
926
+ )
927
+ else:
928
+ layer_outputs = encoder_layer(
929
+ hidden_states,
930
+ attention_mask,
931
+ layer_head_mask=(
932
+ head_mask[idx] if head_mask is not None else None
933
+ ),
934
+ output_attentions=output_attentions,
935
+ )
936
+
937
+ hidden_states = layer_outputs[0]
938
+
939
+ if output_attentions:
940
+ all_attentions = all_attentions + (layer_outputs[1],)
941
+
942
+ hidden_states = self.layer_norm(hidden_states)
943
+ if output_hidden_states:
944
+ encoder_states = encoder_states + (hidden_states,)
945
+
946
+ if not return_dict:
947
+ return tuple(
948
+ v
949
+ for v in [hidden_states, encoder_states, all_attentions]
950
+ if v is not None
951
+ )
952
+ return transformers.modeling_outputs.BaseModelOutput(
953
+ last_hidden_state=hidden_states,
954
+ hidden_states=encoder_states,
955
+ attentions=all_attentions,
956
+ )
957
+
958
+
959
+ UltravoxConfig.register_for_auto_class()
960
+ UltravoxModel.register_for_auto_class()
961
+
962
+ transformers.AutoConfig.register("ultravox", UltravoxConfig)
963
+ transformers.AutoModel.register(UltravoxConfig, UltravoxModel)
964
+
965
+ transformers.activations.ACT2FN["swiglu"] = SwiGLU
ultravox_pipeline.py ADDED
@@ -0,0 +1,128 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import logging
2
+ from typing import Any, Dict, List, Optional
3
+
4
+ import numpy as np
5
+ import transformers
6
+
7
+ # We must use relative import in this directory to allow uploading to HF Hub
8
+ # Even "from . import X" pattern doesn't work (undocumented and unclear why)
9
+ from .ultravox_model import UltravoxModel
10
+ from .ultravox_processing import UltravoxProcessor
11
+
12
+
13
+ class UltravoxPipeline(transformers.Pipeline):
14
+ def __init__(
15
+ self,
16
+ model: UltravoxModel,
17
+ tokenizer: Optional[transformers.PreTrainedTokenizerBase] = None,
18
+ audio_processor: Optional[transformers.ProcessorMixin] = None,
19
+ **kwargs
20
+ ):
21
+ if tokenizer is None:
22
+ try:
23
+ tokenizer = transformers.AutoTokenizer.from_pretrained(
24
+ model.config._name_or_path
25
+ )
26
+ except:
27
+ tokenizer = transformers.AutoTokenizer.from_pretrained(
28
+ model.config.text_model_id or model.config.text_config._name_or_path
29
+ )
30
+
31
+ if audio_processor is None:
32
+ audio_processor = transformers.AutoProcessor.from_pretrained(
33
+ model.config.audio_model_id or model.config.audio_config._name_or_path
34
+ )
35
+
36
+ super().__init__(model=model, tokenizer=tokenizer, **kwargs)
37
+
38
+ self.processor = UltravoxProcessor(
39
+ audio_processor=audio_processor,
40
+ tokenizer=tokenizer,
41
+ stack_factor=model.config.stack_factor,
42
+ audio_context_size=model.audio_tower_context_length,
43
+ )
44
+
45
+ def _sanitize_parameters(self, **kwargs):
46
+ generation_keys = ["temperature", "max_new_tokens", "repetition_penalty"]
47
+ generation_kwargs = {k: kwargs[k] for k in kwargs if k in generation_keys}
48
+ return {}, generation_kwargs, {}
49
+
50
+ def preprocess(self, inputs: Dict[str, Any]):
51
+ turns: list = inputs.get("turns", [])
52
+
53
+ audio = inputs.get("audio", None)
54
+ # Convert to float32 if needed.
55
+ if isinstance(audio, np.ndarray):
56
+ if audio.dtype == np.float64:
57
+ audio = audio.astype(np.float32)
58
+ elif audio.dtype == np.int16:
59
+ audio = audio.astype(np.float32) / np.float32(32768.0)
60
+ elif audio.dtype == np.int32:
61
+ audio = audio.astype(np.float32) / np.float32(2147483648.0)
62
+
63
+ if audio is not None and (len(turns) == 0 or turns[-1]["role"] != "user"):
64
+ prompt = inputs.get("prompt", "<|audio|>")
65
+ if "<|audio|>" not in prompt:
66
+ logging.warning(
67
+ "Prompt does not contain '<|audio|>', appending '<|audio|>' to the end of the prompt."
68
+ )
69
+
70
+ prompt += " <|audio|>"
71
+ turns.append({"role": "user", "content": prompt})
72
+
73
+ text = self.processor.tokenizer.apply_chat_template(
74
+ turns, add_generation_prompt=True, tokenize=False
75
+ )
76
+
77
+ if "sampling_rate" not in inputs and audio is not None:
78
+ logging.warning(
79
+ "No sampling rate provided, using default of 16kHz. We highly recommend providing the correct sampling rate."
80
+ )
81
+
82
+ output = self.processor(
83
+ text=text,
84
+ audio=audio,
85
+ sampling_rate=inputs.get("sampling_rate", 16000),
86
+ )
87
+ if "audio_values" in output:
88
+ output["audio_values"] = output["audio_values"].to(self.model.dtype)
89
+
90
+ return output
91
+
92
+ def _forward(
93
+ self,
94
+ model_inputs: Dict[str, Any],
95
+ temperature: Optional[float] = None,
96
+ max_new_tokens: Optional[int] = None,
97
+ repetition_penalty: float = 1.1,
98
+ ) -> List[int]:
99
+ temperature = temperature or None
100
+ do_sample = temperature is not None
101
+
102
+ terminators = [self.tokenizer.eos_token_id]
103
+ if "<|eot_id|>" in self.tokenizer.added_tokens_encoder:
104
+ terminators.append(self.tokenizer.convert_tokens_to_ids("<|eot_id|>"))
105
+
106
+ input_len = model_inputs["input_ids"].shape[1]
107
+
108
+ outputs = self.model.generate(
109
+ **model_inputs,
110
+ do_sample=do_sample,
111
+ temperature=temperature,
112
+ max_new_tokens=max_new_tokens,
113
+ repetition_penalty=repetition_penalty,
114
+ eos_token_id=terminators
115
+ )
116
+ return outputs[0][input_len:]
117
+
118
+ def postprocess(self, model_outputs) -> str:
119
+ output_text = self.tokenizer.decode(model_outputs, skip_special_tokens=True)
120
+ return output_text
121
+
122
+
123
+ transformers.pipelines.PIPELINE_REGISTRY.register_pipeline(
124
+ "ultravox-pipeline",
125
+ pipeline_class=UltravoxPipeline,
126
+ pt_model=transformers.AutoModel,
127
+ type="multimodal",
128
+ )
ultravox_processing.py ADDED
@@ -0,0 +1,379 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import dataclasses
2
+ from typing import Any, Dict, List, Optional, Union
3
+
4
+ import numpy as np
5
+ import torch
6
+ import torch.nn.functional as F
7
+ import transformers
8
+
9
+ from .ultravox_config import UltravoxConfig
10
+
11
+
12
+ @dataclasses.dataclass
13
+ class DataCollatorForSeq2SeqWithAudio(transformers.DataCollatorForSeq2Seq):
14
+ # when enabled, the alt_input_ids, alt_attention_mask, and alt_labels fields are used for computing the KL loss in UltravoxModel
15
+ include_alt_fields: bool = False
16
+
17
+ def __call__(self, features, *args, **kwargs):
18
+ audio_values = [x for f in features for x in f.pop("audio_values", [])]
19
+ audio_lens = [x for f in features for x in f.pop("audio_lens", [])]
20
+ audio_token_len = [x for f in features for x in f.pop("audio_token_len", [])]
21
+ audio_token_start_idx = [
22
+ x for f in features for x in f.pop("audio_token_start_idx", [])
23
+ ]
24
+
25
+ if self.include_alt_fields:
26
+ # these fields are hard-coded in the transformer data collator, so they need special handling before calling the super method
27
+ alt_features = [
28
+ {
29
+ "input_ids": f.pop("alt_input_ids"),
30
+ "attention_mask": f.pop("alt_attention_mask"),
31
+ "labels": f.pop("alt_labels"),
32
+ }
33
+ for f in features
34
+ ]
35
+
36
+ batch = super().__call__(features, *args, **kwargs)
37
+ if self.include_alt_fields:
38
+ alt_batch = super().__call__(alt_features, *args, **kwargs)
39
+ batch["alt_input_ids"] = alt_batch["input_ids"]
40
+ batch["alt_attention_mask"] = alt_batch["attention_mask"]
41
+ batch["alt_labels"] = alt_batch["labels"]
42
+
43
+ batch["audio_token_start_idx"] = torch.stack(audio_token_start_idx)
44
+ batch["audio_lens"] = torch.stack(audio_lens)
45
+ batch["audio_token_len"] = torch.stack(audio_token_len)
46
+
47
+ # Pad the last dimension of all audio_values to the same length, with 0s on the right.
48
+ if audio_values:
49
+ max_len = max([x.shape[-1] for x in audio_values])
50
+ batch["audio_values"] = torch.stack(
51
+ [F.pad(x, (0, max_len - x.shape[-1])) for x in audio_values]
52
+ )
53
+ if self.tokenizer.padding_side == "left":
54
+ input_ids_lens = torch.LongTensor(
55
+ [f["input_ids"].shape[-1] for f in features]
56
+ )
57
+ displacement = batch["input_ids"].shape[-1] - input_ids_lens
58
+ displacement = displacement.repeat_interleave(
59
+ batch["audio_batch_size"].squeeze(-1)
60
+ )
61
+ batch["audio_token_start_idx"] += displacement.to(
62
+ batch["audio_token_start_idx"].device
63
+ )
64
+ return batch
65
+
66
+
67
+ class UltravoxProcessor(transformers.ProcessorMixin):
68
+ """
69
+ Constructs an Ultravox processor which wraps an audio processor and a tokenizer into a single processor.
70
+
71
+ Args:
72
+ audio_processor: The audio processor for the audio encoder.
73
+ tokenizer: The tokenizer for the language model.
74
+ """
75
+
76
+ attributes = ["audio_processor", "tokenizer"]
77
+ audio_processor_class = ("WhisperProcessor",)
78
+ tokenizer_class = (
79
+ "PreTrainedTokenizer",
80
+ "PreTrainedTokenizerFast",
81
+ )
82
+
83
+ tokenizer: transformers.PreTrainedTokenizerBase
84
+ audio_processor: transformers.ProcessorMixin
85
+
86
+ def __init__(
87
+ self,
88
+ audio_processor=None,
89
+ tokenizer=None,
90
+ audio_padding: str = "longest",
91
+ encoder_ds_factor: int = 2,
92
+ stack_factor: int = 8,
93
+ audio_placeholder: str = "<|audio|>",
94
+ # Defaults to whisper encoder context size
95
+ audio_context_size: Optional[int] = 3000,
96
+ ):
97
+ """
98
+ Args:
99
+ audio_processor: The audio processor for the audio encoder.
100
+ tokenizer: The tokenizer for the language model.
101
+ audio_padding: The padding strategy for the audio encoder.
102
+ stack_factor: The factor by which the audio encoder output is stacked in the multimodal projector.
103
+ encoder_ds_factor: The downsampling factor of the audio encoder.
104
+ audio_placeholder: The placeholder for the audio in the text.
105
+ audio_context_size: The maximum number of frames that the audio encoder can handle.
106
+ """
107
+ self.audio_padding = audio_padding
108
+ self.encoder_ds_factor = encoder_ds_factor
109
+ self.stack_factor = stack_factor
110
+ self.audio_placeholder = audio_placeholder
111
+ self.audio_context_size = audio_context_size
112
+ assert (
113
+ tokenizer.eos_token is not None
114
+ ), "The tokenizer has no EOS token. Cannot recover."
115
+ self.vocab = tokenizer.get_vocab()
116
+ self.audio_token_replacement = tokenizer.eos_token
117
+ if tokenizer.pad_token_id is None:
118
+ tokenizer.pad_token_id = tokenizer.eos_token_id
119
+
120
+ super().__init__(audio_processor=audio_processor, tokenizer=tokenizer)
121
+
122
+ @classmethod
123
+ def from_pretrained(cls, pretrained_model_name_or_path: str, **kwargs):
124
+ config: UltravoxConfig = transformers.AutoConfig.from_pretrained(
125
+ pretrained_model_name_or_path, **kwargs
126
+ )
127
+ audio_processor = transformers.AutoProcessor.from_pretrained(
128
+ config.audio_model_id
129
+ or config.audio_config._name_or_path
130
+ or "openai/whisper-tiny"
131
+ )
132
+
133
+ tokenizer = transformers.AutoTokenizer.from_pretrained(
134
+ pretrained_model_name_or_path, **kwargs
135
+ )
136
+ tokenizer.padding_side = "left"
137
+ tokenizer.pad_token = tokenizer.eos_token
138
+
139
+ return cls(
140
+ audio_processor=audio_processor,
141
+ tokenizer=tokenizer,
142
+ stack_factor=config.stack_factor,
143
+ )
144
+
145
+ def _chunk_and_pad_audio(
146
+ self,
147
+ audio_values: torch.Tensor,
148
+ audio_lens: torch.Tensor,
149
+ include_audio_num_chunks: bool = False,
150
+ ) -> Dict[str, Any]:
151
+ """
152
+ Processes the audio batch by chunking any items in the batch according to the audio_context_size,
153
+ padding the last chunk if needed, and returns a dictionary with updated audio data.
154
+
155
+ Args:
156
+ audio_values (torch.Tensor): A tensor of audio values (e.g., in B, D, T format).
157
+ audio_lens (torch.Tensor): A tensor of audio lengths.
158
+
159
+ Returns:
160
+ Dict[str, Any]: Dictionary with the following keys:
161
+ - "audio_values": The concatenated audio tensor after chunking and padding.
162
+ - "audio_lens": Tensor of lengths for each chunk.
163
+ - "audio_is_continuation": Tensor of booleans indicating if the chunk is a continuation of the previous chunk.
164
+ - "audio_batch_size": A Tensor with one integer representing the number of chunks.
165
+
166
+ """
167
+ chunked_audio_values: List[torch.Tensor] = []
168
+ chunked_audio_lens: List[int] = []
169
+ is_continuation_list: List[bool] = []
170
+ num_chunks: List[int] = []
171
+ context_size = self.audio_context_size or audio_values.shape[-1]
172
+
173
+ for i in range(audio_values.shape[0]): # iterate over the batch
174
+ num_chunks.append(int(np.ceil(audio_lens[i] / context_size)))
175
+ for offset in range(0, audio_lens[i], context_size):
176
+ is_continuation = offset > 0
177
+ chunk = audio_values[i, :, offset : offset + context_size]
178
+ if is_continuation and chunk.shape[-1] < context_size:
179
+ # N.B. We only need to pad continuation chunks. If none of the samples require chunking, the
180
+ # batch might not (need to) be padded all the way to the audio_context_size, in which case
181
+ # we've already included the padding above. On the other hand, if we have any continuation
182
+ # chunks we know that the batch needs to be padded to audio_context_size because that's what
183
+ # we're slicing to.
184
+ chunk = F.pad(chunk, (0, context_size - chunk.shape[-1]))
185
+ chunked_audio_values.append(chunk)
186
+ chunked_audio_lens.append(
187
+ min(int(audio_lens[i].item()) - offset, context_size)
188
+ )
189
+ is_continuation_list.append(is_continuation)
190
+
191
+ data = {
192
+ "audio_values": torch.stack(chunked_audio_values, dim=0),
193
+ "audio_lens": torch.tensor(
194
+ chunked_audio_lens, dtype=torch.int64, device=audio_values.device
195
+ ),
196
+ "audio_is_continuation": torch.tensor(
197
+ is_continuation_list, dtype=torch.bool, device=audio_values.device
198
+ ),
199
+ "audio_batch_size": torch.tensor(
200
+ [len(chunked_audio_values)], device=audio_values.device
201
+ ),
202
+ }
203
+ if include_audio_num_chunks:
204
+ data["audio_num_chunks"] = torch.tensor(
205
+ num_chunks, dtype=torch.int64, device=audio_values.device
206
+ )
207
+ return data
208
+
209
+ def __call__(
210
+ self,
211
+ text: Optional[str] = None,
212
+ audio: Optional[Union[np.ndarray, torch.Tensor]] = None,
213
+ audios: Optional[
214
+ Union[
215
+ List[Union[np.ndarray, torch.Tensor]], Union[np.ndarray, torch.Tensor]
216
+ ]
217
+ ] = None,
218
+ sampling_rate: Optional[int] = None,
219
+ return_tensors: Optional[
220
+ Union[str, transformers.TensorType]
221
+ ] = transformers.TensorType.PYTORCH,
222
+ include_audio_num_chunks: bool = False,
223
+ **kwargs,
224
+ ) -> transformers.BatchFeature:
225
+ """
226
+ Main method to prepare for the model one text sequence and audio. This method forwards the `text`
227
+ and `kwargs` arguments to PreTrainedTokenizerFast's [`~PreTrainedTokenizerFast.__call__`] if `text` is not `None` to encode
228
+ the text. To prepare the audio(s), this method forwards the `audio`, `sampling_rate` and `kwargs` arguments to
229
+ audio processor's [`~WhisperProcessor.__call__`] if `audio` is not `None`. Please refer to the docstring
230
+ of the above two methods for more information.
231
+
232
+ Args:
233
+ text (`str`, `List[str]`):
234
+ The sequence to be encoded. Sequence can be a string or (pretokenized string).
235
+ audio (`np.ndarray`, `torch.Tensor`, `List[np.ndarray]`, `List[torch.Tensor]`):
236
+ The audio to be prepared. Audio can be a single-channel (1-dimensional) NumPy array or PyTorch tensor.
237
+ audios (`np.ndarray`, `torch.Tensor`, `List[np.ndarray]`, `List[torch.Tensor]`):
238
+ A list or two dimensional array of audio to be prepared.
239
+ sampling_rate (`int`, *optional*, defaults to 16000):
240
+ Sampling rate of the input audio. We expect 16kHz audio. Don't change this value unless you know what
241
+ you are doing.
242
+ return_tensors (`str` or [`~utils.TensorType`], *optional*):
243
+ If set, will return tensors of a particular framework. Acceptable values are:
244
+
245
+ - `'tf'`: Return TensorFlow `tf.constant` objects.
246
+ - `'pt'`: Return PyTorch `torch.Tensor` objects.
247
+ - `'np'`: Return NumPy `np.ndarray` objects.
248
+ - `'jax'`: Return JAX `jnp.ndarray` objects.
249
+
250
+ Returns:
251
+ [`BatchFeature`]: A [`BatchFeature`] with the following fields:
252
+
253
+ - **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`.
254
+ - **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
255
+ `return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
256
+ `None`).
257
+ - **audio_values** -- Processed audio values to be fed to a model. Returned when `audio` is not `None`.
258
+ - **audio_token_len** -- Predicted number of audio frames: this value is guaranteed to be a close upper bound.
259
+ Returned when `audio` is not `None`.
260
+ - **audio_token_start_idx** -- The index in the tokenized text where the audio starts. Returned when `audio` is not `None`.
261
+ """
262
+ # TODO: Add support for multiple text inputs.
263
+ if audio is not None and audios is not None:
264
+ raise ValueError("Only one of `audio` or `audios` should be provided.")
265
+ elif audio is not None:
266
+ audios = audio if isinstance(audio, list) or audio.ndim == 2 else [audio]
267
+ elif audios is None:
268
+ audios = []
269
+
270
+ data = {}
271
+ audio_is_continuation = []
272
+ if len(audios) > 0:
273
+ audios = [x.numpy() if isinstance(x, torch.Tensor) else x for x in audios]
274
+
275
+ # Pad out each audio to at least 2 hops (the minimum required by the processor).
276
+ hop_length = self.audio_processor.feature_extractor.hop_length
277
+ audios = [
278
+ (
279
+ np.pad(x, (0, 2 * hop_length - len(x)), mode="constant")
280
+ if len(x) < 2 * hop_length
281
+ else x
282
+ )
283
+ for x in audios
284
+ ]
285
+
286
+ # Main audio processing. The processor is model-specific.
287
+ x: transformers.BatchFeature = self.audio_processor(
288
+ audios,
289
+ sampling_rate=sampling_rate,
290
+ padding="longest",
291
+ pad_to_multiple_of=hop_length, # The attention mask effectively gets padded to the hop length, so pad the audio to be consistent.
292
+ truncation=False,
293
+ return_attention_mask=True,
294
+ **kwargs,
295
+ )
296
+
297
+ data.update(
298
+ self._chunk_and_pad_audio(
299
+ audio_values=torch.as_tensor(
300
+ x.input_features if "input_features" in x else x.input_values
301
+ ),
302
+ audio_lens=torch.as_tensor(x.attention_mask).sum(-1),
303
+ include_audio_num_chunks=include_audio_num_chunks,
304
+ )
305
+ )
306
+
307
+ audio_is_continuation = data.pop("audio_is_continuation")
308
+ data["audio_token_len"] = torch.ceil(
309
+ data["audio_lens"] / (self.encoder_ds_factor * self.stack_factor)
310
+ ).to(dtype=torch.int)
311
+
312
+ if text is not None:
313
+ if not isinstance(text, str):
314
+ raise ValueError("Text must be a string. Batch mode not supported yet.")
315
+
316
+ # Special tokens like BOS should already have been added by the caller.
317
+ tokenized_parts = self.tokenizer(
318
+ text.split(
319
+ "<|audio|>" # The placeholder isn't part of the vocabulary, so split the text around it.
320
+ ),
321
+ add_special_tokens=False,
322
+ **kwargs,
323
+ )
324
+
325
+ audio_token_start_idx = []
326
+ placeholder_index = -1
327
+ split_input_ids = tokenized_parts["input_ids"]
328
+ input_ids: List[int] = []
329
+
330
+ audio_token_replacement_token_id = self.vocab[self.audio_token_replacement]
331
+
332
+ for i, token_len in enumerate(data.get("audio_token_len", [])):
333
+ if not audio_is_continuation[i]:
334
+ placeholder_index += 1
335
+ if placeholder_index >= len(split_input_ids):
336
+ raise ValueError(
337
+ f"Text contains too few audio placeholders. (Expected {len(audios)} placeholders)"
338
+ )
339
+
340
+ input_ids.extend(split_input_ids[placeholder_index])
341
+
342
+ audio_token_start_idx.append(len(input_ids))
343
+
344
+ input_ids.extend([audio_token_replacement_token_id] * token_len)
345
+
346
+ # Include any tokens after the last audio.
347
+ placeholder_index += 1
348
+ if placeholder_index != len(split_input_ids) - 1:
349
+ raise ValueError(
350
+ f"Text contains too many audio placeholders. (Expected {len(audios)} placeholders)"
351
+ )
352
+ input_ids.extend(split_input_ids[placeholder_index])
353
+
354
+ if "audio_token_len" in data:
355
+ data["audio_token_start_idx"] = torch.as_tensor(audio_token_start_idx)
356
+
357
+ data["input_ids"] = [input_ids]
358
+ data["attention_mask"] = [[1] * len(input_ids)]
359
+
360
+ # Ensure that there are no audio placeholders after the last audio.
361
+
362
+ return transformers.BatchFeature(data=data, tensor_type=return_tensors)
363
+
364
+ def batch_decode(self, *args, **kwargs):
365
+ return self.tokenizer.batch_decode(*args, **kwargs)
366
+
367
+ def decode(self, *args, **kwargs):
368
+ return self.tokenizer.decode(*args, **kwargs)
369
+
370
+ @property
371
+ def model_input_names(self):
372
+ tokenizer_input_names = self.tokenizer.model_input_names
373
+ audio_processor_input_names = self.audio_processor.model_input_names
374
+ return list(set(tokenizer_input_names + audio_processor_input_names))
375
+
376
+
377
+ UltravoxProcessor.register_for_auto_class()
378
+
379
+ transformers.AutoProcessor.register(UltravoxConfig, UltravoxProcessor)